BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 10738818)

  • 1. Place-pitch sensitivity and its relation to consonant recognition by cochlear implant listeners using the MPEAK and SPEAK speech processing strategies.
    Donaldson GS; Nelson DA
    J Acoust Soc Am; 2000 Mar; 107(3):1645-58. PubMed ID: 10738818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Within-subjects comparison of the HiRes and Fidelity120 speech processing strategies: speech perception and its relation to place-pitch sensitivity.
    Donaldson GS; Dawson PK; Borden LZ
    Ear Hear; 2011; 32(2):238-50. PubMed ID: 21084987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of speech by cochlear implant recipients with the multipeak (MPEAK) and spectral peak (SPEAK) speech coding strategies II. Consonants.
    Skinner MW; Fourakis MS; Holden TA; Holden LK; Demorest ME
    Ear Hear; 1999 Dec; 20(6):443-60. PubMed ID: 10613383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrode ranking of "place pitch" and speech recognition in electrical hearing.
    Nelson DA; Van Tasell DJ; Schroder AC; Soli S; Levine S
    J Acoust Soc Am; 1995 Oct; 98(4):1987-99. PubMed ID: 7593921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of vowel context on the recognition of initial and medial consonants by cochlear implant users.
    Donaldson GS; Kreft HA
    Ear Hear; 2006 Dec; 27(6):658-77. PubMed ID: 17086077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of speech by cochlear implant recipients with the Multipeak (MPEAK) and Spectral Peak (SPEAK) speech coding strategies. I. Vowels.
    Skinner MW; Fourakis MS; Holden TA; Holden LK; Demorest ME
    Ear Hear; 1996 Jun; 17(3):182-97. PubMed ID: 8807261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of presentation level on phoneme and sentence recognition in quiet by cochlear implant listeners.
    Donaldson GS; Allen SL
    Ear Hear; 2003 Oct; 24(5):392-405. PubMed ID: 14534410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplitude mapping and phoneme recognition in cochlear implant listeners.
    Zeng FG; Galvin JJ
    Ear Hear; 1999 Feb; 20(1):60-74. PubMed ID: 10037066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of electrode location and spacing on phoneme recognition with the Nucleus-22 cochlear implant.
    Fu QJ; Shannon RV
    Ear Hear; 1999 Aug; 20(4):321-31. PubMed ID: 10466568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization.
    Winn MB; Won JH; Moon IJ
    Ear Hear; 2016; 37(6):e377-e390. PubMed ID: 27438871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity to interaural level and envelope time differences of two bilateral cochlear implant listeners using clinical sound processors.
    Laback B; Pok SM; Baumgartner WD; Deutsch WA; Schmid K
    Ear Hear; 2004 Oct; 25(5):488-500. PubMed ID: 15599195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association Between Flat-Panel Computed Tomographic Imaging-Guided Place-Pitch Mapping and Speech and Pitch Perception in Cochlear Implant Users.
    Jiam NT; Gilbert M; Cooke D; Jiradejvong P; Barrett K; Caldwell M; Limb CJ
    JAMA Otolaryngol Head Neck Surg; 2019 Feb; 145(2):109-116. PubMed ID: 30477013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dynamic range and amplitude mapping on phoneme recognition in Nucleus-22 cochlear implant users.
    Fu QJ; Shannon RV
    Ear Hear; 2000 Jun; 21(3):227-35. PubMed ID: 10890731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor.
    Fishman KE; Shannon RV; Slattery WH
    J Speech Lang Hear Res; 1997 Oct; 40(5):1201-15. PubMed ID: 9328890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of stimulation rate on phoneme recognition by nucleus-22 cochlear implant listeners.
    Fu QJ; Shannon RV
    J Acoust Soc Am; 2000 Jan; 107(1):589-97. PubMed ID: 10641667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing speech envelope by integrating hair-cell adaptation into cochlear implant processing.
    Azadpour M; Smith RL
    Hear Res; 2016 Dec; 342():48-57. PubMed ID: 27697486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of parametric variations of cochlear implant processors on speech understanding.
    Loizou PC; Poroy O; Dorman M
    J Acoust Soc Am; 2000 Aug; 108(2):790-802. PubMed ID: 10955646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the Optimized Pitch and Language Strategy in Cochlear Implant Recipients.
    Vandali A; Dawson P; Au A; Yu Y; Brown M; Goorevich M; Cowan R
    Ear Hear; 2019; 40(3):555-567. PubMed ID: 30067558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral and temporal cues in cochlear implant speech perception.
    Nie K; Barco A; Zeng FG
    Ear Hear; 2006 Apr; 27(2):208-17. PubMed ID: 16518146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speech perception in children using the advanced Speak speech-processing strategy.
    Cowan RS; Brown C; Whitford LA; Galvin KL; Sarant JZ; Barker EJ; Shaw S; King A; Skok M; Seligman PM
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():318-21. PubMed ID: 7668688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.