These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 10738823)

  • 1. Rheo-acoustical study of the shear disruption of reversible aggregates. Ultrasound scattering from concentrated suspensions of red cell aggregates.
    Haider L; Snabre P; Boynard M
    J Acoust Soc Am; 2000 Mar; 107(3):1715-26. PubMed ID: 10738823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound scattering from concentrated suspensions of aggregated red cells in shear flow.
    Haider L; Snabre P; Boynard M
    Clin Hemorheol Microcirc; 2004; 30(3-4):345-52. PubMed ID: 15258365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheology and ultrasound scattering from aggregated red cell suspensions in shear flow.
    Haider L; Snabre P; Boynard M
    Biophys J; 2004 Oct; 87(4):2322-34. PubMed ID: 15454433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-frequency ultrasound backscattering by blood: analytical and semianalytical models of the erythrocyte cross section.
    Savéry D; Cloutier G
    J Acoust Soc Am; 2007 Jun; 121(6):3963-71. PubMed ID: 17552743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the frequency dependence (5-120 MHz) of ultrasound backscattering by red cell aggregates in shear flow at a normal hematocrit.
    Fontaine I; Cloutier G
    J Acoust Soc Am; 2003 May; 113(5):2893-900. PubMed ID: 12765406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High frequency ultrasonic backscatter from erythrocyte suspension.
    Kuo IY; Shung KK
    IEEE Trans Biomed Eng; 1994 Jan; 41(1):29-34. PubMed ID: 8200665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A point process approach to assess the frequency dependence of ultrasound backscattering by aggregating red blood cells.
    Savéry D; Cloutier G
    J Acoust Soc Am; 2001 Dec; 110(6):3252-62. PubMed ID: 11785826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound backscattering from non-aggregating and aggregating erythrocytes--a review.
    Cloutier G; Qin Z
    Biorheology; 1997; 34(6):443-70. PubMed ID: 9640358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The intensity reflection coefficient: a complementary method for investigating blood backscattering properties with ultrasound.
    Amararene A; Cloutier G
    Clin Hemorheol Microcirc; 2008; 38(3):189-200. PubMed ID: 18239261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-cell contact and membrane spreading in an ultrasound trap.
    Coakley WT; Bazou D; Morgan J; Foster GA; Archer CW; Powell K; Borthwick KA; Twomey C; Bishop J
    Colloids Surf B Biointerfaces; 2004 Apr; 34(4):221-30. PubMed ID: 15261061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Power Doppler ultrasound evaluation of the shear rate and shear stress dependences of red blood cell aggregation.
    Cloutier G; Qin Z; Durand LG; Teh BG
    IEEE Trans Biomed Eng; 1996 May; 43(5):441-50. PubMed ID: 8849457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of red blood cell aggregate formation using an analytical model of the ultrasonic backscattering coefficient.
    Sennaoui A; Boynard M; Pautou C
    IEEE Trans Biomed Eng; 1997 Jul; 44(7):585-91. PubMed ID: 9210818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent and incoherent ultrasound backscatter from cell aggregates.
    de Monchy R; Destrempes F; Saha RK; Cloutier G; Franceschini E
    J Acoust Soc Am; 2016 Sep; 140(3):2173. PubMed ID: 27914445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell disaggregation behavior in shear flow.
    Snabre P; Bitbol M; Mills P
    Biophys J; 1987 May; 51(5):795-807. PubMed ID: 2439136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of red cell clustering and anisotropy on ultrasound blood backscatter: a Monte Carlo study.
    Savéry D; Cloutier G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):94-103. PubMed ID: 15742565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forward problem study of an effective medium model for ultrasound blood characterization.
    Franceschini E; Metzger B; Cloutier G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2668-79. PubMed ID: 23443702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic characterization of proteins and blood cells.
    Dukhin AS; Goetz PJ; van de Ven TG
    Colloids Surf B Biointerfaces; 2006 Dec; 53(2):121-6. PubMed ID: 16979881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear-Induced Breakup of Cellulose Nanocrystal Aggregates.
    Xu HN; Tang YY; Ouyang XK
    Langmuir; 2017 Jan; 33(1):235-242. PubMed ID: 27936767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation behavior of red blood cells in shear flow. A theoretical interpretation of simultaneous rheo-optical and viscometric measurements.
    Berli CL; Quemada D
    Biorheology; 2001; 38(1):27-38. PubMed ID: 11381163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic backscattering and microstructure in sheared concentrated suspensions.
    Lombard O; Rouyer J; Debieu E; Blanc F; Franceschini E
    J Acoust Soc Am; 2020 Mar; 147(3):1359. PubMed ID: 32237850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.