BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 10738901)

  • 1. Total acid soluble and insoluble carnitine levels in human brain tumors.
    Sandikci KS; Gümüstaş MK; Tüter Y; Kökoğlu E; Ozyurt E; Sözer V
    Cancer Biochem Biophys; 1999 Jul; 17(1-2):49-57. PubMed ID: 10738901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profiles of the fatty acids in the plasma membrane of human brain tumors.
    Kökoğlu E; Tüter Y; Yazici Z; Sandikci KS; Sönmez H; Ulakoğlu EZ; Ozyurt E
    Cancer Biochem Biophys; 1998 Nov; 16(4):301-12. PubMed ID: 9925279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carnitine metabolism and human carnitine deficiency.
    Tanphaichitr V; Leelahagul P
    Nutrition; 1993; 9(3):246-54. PubMed ID: 8353366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Q-modification of tRNAs in human brain tumors.
    Aytaç U; Gündüz U
    Cancer Biochem Biophys; 1994 Sep; 14(2):93-8. PubMed ID: 7889496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carnitine deficiency disorders in children.
    Stanley CA
    Ann N Y Acad Sci; 2004 Nov; 1033():42-51. PubMed ID: 15591002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatocyte growth factor is associated with poor prognosis of malignant gliomas and is a predictor for recurrence of meningioma.
    Arrieta O; Garcia E; Guevara P; Garcia-Navarrete R; Ondarza R; Rembao D; Sotelo J
    Cancer; 2002 Jun; 94(12):3210-8. PubMed ID: 12115353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of carnitine esters in brain neuropathology.
    Virmani A; Binienda Z
    Mol Aspects Med; 2004; 25(5-6):533-49. PubMed ID: 15363640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents.
    Turner N; Bruce CR; Beale SM; Hoehn KL; So T; Rolph MS; Cooney GJ
    Diabetes; 2007 Aug; 56(8):2085-92. PubMed ID: 17519422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Physiological functions of carnitine and carnitine transporters in the central nervous system].
    Inazu M; Matsumiya T
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2008 Jun; 28(3):113-20. PubMed ID: 18646596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of lipids from human brain tissues by multinuclear magnetic resonance spectroscopy.
    Tugnoli V; Tosi MR; Tinti A; Trinchero A; Bottura G; Fini G
    Biopolymers; 2001; 62(6):297-306. PubMed ID: 11857268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The role of carnitine in human lipid metabolism].
    Pietrzak I; Opala G
    Wiad Lek; 1998; 51(1-2):71-5. PubMed ID: 9608835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of metabolic modifiers such as carnitines, coenzyme Q10, and PUFAs against different forms of neurotoxic insults: metabolic inhibitors, MPTP, and methamphetamine.
    Virmani A; Gaetani F; Binienda Z
    Ann N Y Acad Sci; 2005 Aug; 1053():183-91. PubMed ID: 16179522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Levels of cadmium, lead, and mercury in human brain tumors.
    Al-Saleh I; Shinwari N
    Biol Trace Elem Res; 2001 Mar; 79(3):197-203. PubMed ID: 11354345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of survivin, an inhibitor of apoptosis protein, in tumors of the nervous system.
    Sasaki T; Lopes MB; Hankins GR; Helm GA
    Acta Neuropathol; 2002 Jul; 104(1):105-9. PubMed ID: 12070671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential carnitine/acylcarnitine translocase expression defines distinct metabolic signatures in skeletal muscle cells.
    Peluso G; Petillo O; Margarucci S; Grippo P; Melone MA; Tuccillo F; Calvani M
    J Cell Physiol; 2005 May; 203(2):439-46. PubMed ID: 15515015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carnitine in type 2 diabetes.
    Mingrone G
    Ann N Y Acad Sci; 2004 Nov; 1033():99-107. PubMed ID: 15591007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts.
    Sorokina N; O'Donnell JM; McKinney RD; Pound KM; Woldegiorgis G; LaNoue KF; Ballal K; Taegtmeyer H; Buttrick PM; Lewandowski ED
    Circulation; 2007 Apr; 115(15):2033-41. PubMed ID: 17404155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of lipid oxidation during exercise: role of energy state and mitochondrial factors.
    Sahlin K; Harris RC
    Acta Physiol (Oxf); 2008 Dec; 194(4):283-91. PubMed ID: 18557841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Uridine diphosphate sugar in meningiomas of the brain].
    Popova GM; Promyslov MSh; Gabibov GA
    Zh Vopr Neirokhir Im N N Burdenko; 1996; (3):30-1. PubMed ID: 8975513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the hepatic malonyl-CoA-carnitine palmitoyltransferase 1A partnership creates a metabolic switch allowing oxidation of de novo fatty acids.
    Akkaoui M; Cohen I; Esnous C; Lenoir V; Sournac M; Girard J; Prip-Buus C
    Biochem J; 2009 May; 420(3):429-38. PubMed ID: 19302064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.