These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 10739095)

  • 1. Participation of the tightly-bound (putative cytoskeleton-bound) polysomes in translation during germination of dormant and non-dormant cereal caryopses.
    Weidner S; Lukaszewicz D; Amarowicz R
    Z Naturforsch C J Biosci; 2000; 55(1-2):23-9. PubMed ID: 10739095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gibberellin-like effects of KAR1 on dormancy release of Avena fatua caryopses include participation of non-enzymatic antioxidants and cell cycle activation in embryos.
    Cembrowska-Lech D; Kępczyński J
    Planta; 2016 Feb; 243(2):531-48. PubMed ID: 26526413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Germination induction of dormant Avena fatua caryopses by KAR(1) and GA(3) involving the control of reactive oxygen species (H2O2 and O2(·-)) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers.
    Cembrowska-Lech D; Koprowski M; Kępczyński J
    J Plant Physiol; 2015 Mar; 176():169-79. PubMed ID: 25618514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of plant polysomes with the actin cytoskeleton.
    Klyachko N; Aksenova L; Dunaeva M; Kulikova A
    Cell Biol Int; 2000; 24(6):351-8. PubMed ID: 10860570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NO-mediated dormancy release of Avena fatua caryopses is associated with decrease in abscisic acid sensitivity, content and ABA/GA
    Kępczyński J; Wójcik A; Dziurka M
    Planta; 2023 Apr; 257(6):101. PubMed ID: 37087501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Avena fatua caryopsis dormancy release is associated with changes in KAR
    Kępczyński J; Wójcik A; Dziurka M
    Planta; 2021 Jan; 253(2):52. PubMed ID: 33507406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. c-myc mRNA in cytoskeletal-bound polysomes in fibroblasts.
    Hesketh JE; Campbell GP; Whitelaw PF
    Biochem J; 1991 Mar; 274 ( Pt 2)(Pt 2):607-9. PubMed ID: 2006923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A procedure for the quantitative recovery of homogeneous populations of undegraded free and bound polysomes from rat liver.
    Ramsey JC; Steele WJ
    Biochemistry; 1976 Apr; 15(8):1704-12. PubMed ID: 1268192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods for isolation and analysis of polyribosomes.
    Davies E; Abe S
    Methods Cell Biol; 1995; 50():209-22. PubMed ID: 8531795
    [No Abstract]   [Full Text] [Related]  

  • 10. Insulin and step-up conditions cause a redistribution of polysomes among free, cytoskeletal-bound and membrane-bound fractions in Krebs II ascites cells.
    Vedeler A; Pryme IF; Hesketh JE
    Cell Biol Int Rep; 1990 Mar; 14(3):211-8. PubMed ID: 2188741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains.
    Benech-Arnold RL; Gualano N; Leymarie J; Côme D; Corbineau F
    J Exp Bot; 2006; 57(6):1423-30. PubMed ID: 16547124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of free and membrane-bound polysomes from Escherichia coli.
    Randall LL; Hardy SJ
    Methods Enzymol; 1983; 97():70-6. PubMed ID: 6361483
    [No Abstract]   [Full Text] [Related]  

  • 13. Distribution of glutathione peroxidase mRNAs between free and cytoskeletal-bound polysomes in H4 hepatoma cells.
    Campbell GP; Hesketh JE
    Biochem Soc Trans; 1996 May; 24(2):189S. PubMed ID: 8736847
    [No Abstract]   [Full Text] [Related]  

  • 14. Synthesis in vitro of intrinsic membrane proteins by free, membrane-bound, and Golgi apparatus-associated polyribosomes from rat liver.
    Elder JH; Morré DJ
    J Biol Chem; 1976 Aug; 251(16):5054-68. PubMed ID: 956176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Interrelationship between Abscisic Acid and Reactive Oxygen Species Plays a Key Role in Barley Seed Dormancy and Germination.
    Ishibashi Y; Aoki N; Kasa S; Sakamoto M; Kai K; Tomokiyo R; Watabe G; Yuasa T; Iwaya-Inoue M
    Front Plant Sci; 2017; 8():275. PubMed ID: 28377774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of polysomes from thylakoid membranes of Chlamydomonas reinhardii.
    Bolli R; Mendiola-Morgenthaler L; Boschetti A
    Biochim Biophys Acta; 1981 Apr; 653(2):276-87. PubMed ID: 7225398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Germination Potential of Dormant and Nondormant Arabidopsis Seeds Is Driven by Distinct Recruitment of Messenger RNAs to Polysomes.
    Basbouss-Serhal I; Soubigou-Taconnat L; Bailly C; Leymarie J
    Plant Physiol; 2015 Jul; 168(3):1049-65. PubMed ID: 26019300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in the incorporation of [3H]-glucosamine into nascent polypeptide chains on free polysomes and two fractions of membrane-bound polysomes in mouse myeloma cells.
    Pryme IF; Svardal AM
    Mol Biol Rep; 1979 Feb; 4(4):223-8. PubMed ID: 440301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of rough microsomes and membrane-bound polysomes that are active in protein synthesis in vitro.
    Gaetani S; Smith JA; Feldman RA; Morimoto T
    Methods Enzymol; 1983; 96():3-24. PubMed ID: 6656633
    [No Abstract]   [Full Text] [Related]  

  • 20. Characterization of cDNA clones for differentially expressed genes in embryos of dormant and nondormant Avena fatua L. caryopses.
    Johnson RR; Cranston HJ; Chaverra ME; Dyer WE
    Plant Mol Biol; 1995 Apr; 28(1):113-22. PubMed ID: 7787176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.