These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 10739475)
1. Application of polyphosphate metabolism to environmental and biotechnological problems. Keasling JD; Van Dien SJ; Trelstad P; Renninger N; McMahon K Biochemistry (Mosc); 2000 Mar; 65(3):324-31. PubMed ID: 10739475 [TBL] [Abstract][Full Text] [Related]
2. Inorganic polyphosphate in mitochondria of Saccharomyces cerevisiae at phosphate limitation and phosphate excess. Pestov NA; Kulakovskaya TV; Kulaev IS FEMS Yeast Res; 2004 Mar; 4(6):643-8. PubMed ID: 15040953 [TBL] [Abstract][Full Text] [Related]
3. Inorganic polyphosphate and exopolyphosphatase in the nuclei of Saccharomyces cerevisiae: dependence on the growth phase and inactivation of the PPX1 and PPN1 genes. Lichko LP; Kulakovskaya TV; Kulaev IS Yeast; 2006 Jul; 23(10):735-40. PubMed ID: 16862600 [TBL] [Abstract][Full Text] [Related]
4. Dependence of inorganic polyphosphate chain length on the orthophosphate content in the culture medium of the yeast Saccharomyces cerevisiae. Vagabov VM; Trilisenko LV; Kulaev IS Biochemistry (Mosc); 2000 Mar; 65(3):349-54. PubMed ID: 10739478 [TBL] [Abstract][Full Text] [Related]
5. Recent developments in the biochemistry and ecology of enhanced biological phosphorus removal. Kortstee GJ; Appeldoorn KJ; Bonting CF; van Niel EW; van Veen HW Biochemistry (Mosc); 2000 Mar; 65(3):332-40. PubMed ID: 10739476 [TBL] [Abstract][Full Text] [Related]
6. Intracellular phosphorus metabolism of Microcystis aeruginosa under various redox potential in darkness. Shi X; Yang L; Niu X; Xiao L; Kong Z; Qin B; Gao G Microbiol Res; 2003; 158(4):345-52. PubMed ID: 14717456 [TBL] [Abstract][Full Text] [Related]
7. Microbial selection of polyphosphate-accumulating bacteria in activated sludge wastewater treatment processes for enhanced biological phosphate removal. Mino T Biochemistry (Mosc); 2000 Mar; 65(3):341-8. PubMed ID: 10739477 [TBL] [Abstract][Full Text] [Related]
8. Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Renninger N; Knopp R; Nitsche H; Clark DS; Keasling JD Appl Environ Microbiol; 2004 Dec; 70(12):7404-12. PubMed ID: 15574942 [TBL] [Abstract][Full Text] [Related]
9. Towards a luxury uptake process via microalgae--defining the polyphosphate dynamics. Powell N; Shilton A; Chisti Y; Pratt S Water Res; 2009 Sep; 43(17):4207-13. PubMed ID: 19616819 [TBL] [Abstract][Full Text] [Related]
10. Biology of polyphosphate-accumulating bacteria involved in enhanced biological phosphorus removal. Kortstee GJ; Appeldoorn KJ; Bonting CF; van Niel EW; van Veen HW FEMS Microbiol Rev; 1994 Oct; 15(2-3):137-53. PubMed ID: 7946465 [TBL] [Abstract][Full Text] [Related]
11. Polyphosphate polymers during early embryogenesis of Periplaneta americana. Gomes FM; Ramos IB; Motta LM; Miranda K; Santiago MF; de Souza W; Machado EA J Insect Physiol; 2008 Dec; 54(12):1459-66. PubMed ID: 18773905 [TBL] [Abstract][Full Text] [Related]
12. Molecular analysis of polyphosphate accumulation in bacteria. Kuroda A; Ohtake H Biochemistry (Mosc); 2000 Mar; 65(3):304-8. PubMed ID: 10739472 [TBL] [Abstract][Full Text] [Related]
13. Simulating the Interplay between the Uptake of Inorganic Phosphate and the Cell Phosphate Metabolism under Phosphorus Feast and Famine Conditions in Plyusnina TY; Khruschev SS; Fursova PV; Solovchenko AE; Antal TK; Riznichenko GY; Rubin AB Cells; 2021 Dec; 10(12):. PubMed ID: 34944079 [TBL] [Abstract][Full Text] [Related]
14. Bioenergetic models for acetate and phosphate transport in bacteria important in enhanced biological phosphorus removal. Burow LC; Mabbett AN; McEwan AG; Bond PL; Blackall LL Environ Microbiol; 2008 Jan; 10(1):87-98. PubMed ID: 18211269 [TBL] [Abstract][Full Text] [Related]
15. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
16. NMR-Observed phosphate trafficking and polyphosphate dynamics in wild-type and vph1-1 mutant Saccharomyces cerevisae in response to stresses. Castrol CD; Koretsky AP; Domach MM Biotechnol Prog; 1999; 15(1):65-73. PubMed ID: 9933515 [TBL] [Abstract][Full Text] [Related]
17. Polyphosphate and phosphate pump. Kulaev I; Kulakovskaya T Annu Rev Microbiol; 2000; 54():709-34. PubMed ID: 11018142 [TBL] [Abstract][Full Text] [Related]
18. Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate. Keasling JD Ann N Y Acad Sci; 1997 Nov; 829():242-9. PubMed ID: 9472324 [TBL] [Abstract][Full Text] [Related]
19. Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)? Zhou Y; Pijuan M; Zeng RJ; Lu H; Yuan Z Water Res; 2008 May; 42(10-11):2361-8. PubMed ID: 18222522 [TBL] [Abstract][Full Text] [Related]
20. Effect of reduced pH on inorganic polyphosphate accumulation by Burkholderia cepacia complex isolates. Moriarty TF; Mullan A; McGrath JW; Quinn JP; Elborn JS; Tunney MM Lett Appl Microbiol; 2006 Jun; 42(6):617-23. PubMed ID: 16706902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]