These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 10739566)
1. Measurement of relative fat content by proton magnetic resonance spectroscopy using a clinical imager. Kamba M; Meshitsuka S; Iriguchi N; Koda M; Kimura K; Ogawa T J Magn Reson Imaging; 2000 Mar; 11(3):330-5. PubMed ID: 10739566 [TBL] [Abstract][Full Text] [Related]
2. Proton magnetic resonance spectroscopy for assessment of human body composition. Kamba M; Kimura K; Koda M; Ogawa T Am J Clin Nutr; 2001 Feb; 73(2):172-6. PubMed ID: 11157311 [TBL] [Abstract][Full Text] [Related]
3. [Rapid total body fat measurement by magnetic resonance imaging: quantification and topography]. Vogt FM; Ruehm S; Hunold P; de Greiff A; Nuefer M; Barkhausen J; Ladd SC Rofo; 2007 May; 179(5):480-6. PubMed ID: 17377875 [TBL] [Abstract][Full Text] [Related]
4. Validation of hand-held bioelectrical impedance analysis with magnetic resonance imaging for the assessment of body composition in overweight women. Varady KA; Santosa S; Jones PJ Am J Hum Biol; 2007; 19(3):429-33. PubMed ID: 17421003 [TBL] [Abstract][Full Text] [Related]
5. Use of proton MR spectroscopy and MR imaging to assess obesity. Barac-Nieto M; Gupta RK J Magn Reson Imaging; 1996; 6(1):235-8. PubMed ID: 8851434 [TBL] [Abstract][Full Text] [Related]
6. Chemical shift selective MR imaging using a whole-body magnet. Frahm J; Haase A; Hänicke W; Matthaei D; Bomsdorf H; Helzel T Radiology; 1985 Aug; 156(2):441-4. PubMed ID: 4011907 [TBL] [Abstract][Full Text] [Related]
7. Serial precision of metabolite peak area ratios and water referenced metabolite peak areas in proton MR spectroscopy of the human brain. Simmons A; Smail M; Moore E; Williams SC Magn Reson Imaging; 1998 Apr; 16(3):319-30. PubMed ID: 9621973 [TBL] [Abstract][Full Text] [Related]
8. Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Sinha R; Dufour S; Petersen KF; LeBon V; Enoksson S; Ma YZ; Savoye M; Rothman DL; Shulman GI; Caprio S Diabetes; 2002 Apr; 51(4):1022-7. PubMed ID: 11916921 [TBL] [Abstract][Full Text] [Related]
9. Validation of whole-body magnetic resonance spectroscopy as a tool to assess murine body composition. Mystkowski P; Shankland E; Schreyer SA; LeBoeuf RC; Schwartz RS; Cummings DE; Kushmerick M; Schwartz MW Int J Obes Relat Metab Disord; 2000 Jun; 24(6):719-24. PubMed ID: 10878678 [TBL] [Abstract][Full Text] [Related]
10. Myocardial fat quantification in humans: Evaluation by two-point water-fat imaging and localized proton spectroscopy. Liu CY; Redheuil A; Ouwerkerk R; Lima JA; Bluemke DA Magn Reson Med; 2010 Apr; 63(4):892-901. PubMed ID: 20373390 [TBL] [Abstract][Full Text] [Related]
11. Overall body fat and regional fat distribution in young women: quantification with MR imaging. Gerard EL; Snow RC; Kennedy DN; Frisch RE; Guimaraes AR; Barbieri RL; Sorensen AG; Egglin TK; Rosen BR AJR Am J Roentgenol; 1991 Jul; 157(1):99-104. PubMed ID: 1646564 [TBL] [Abstract][Full Text] [Related]
12. Long TE STEAM and PRESS for estimating fat olefinic/methyl ratios and relative ω-3 fat content at 3T. Fallone CJ; McKay RT; Yahya A J Magn Reson Imaging; 2018 Jul; 48(1):169-177. PubMed ID: 29226603 [TBL] [Abstract][Full Text] [Related]
13. Localized 2D J-resolved 1H MR spectroscopy of human brain tumors in vivo. Thomas MA; Ryner LN; Mehta MP; Turski PA; Sorenson JA J Magn Reson Imaging; 1996; 6(3):453-9. PubMed ID: 8724410 [TBL] [Abstract][Full Text] [Related]
14. Broad line quantitative chemical shift spectroscopy. Sobol WT; Elster AD; Hinson WH; Chwals WJ Med Phys; 1992; 19(1):61-9. PubMed ID: 1620060 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopy of large volumes: spectroscopic imaging of total body fat. Weis J; Hemmingsson A Magn Reson Imaging; 2001 Nov; 19(9):1239-43. PubMed ID: 11755735 [TBL] [Abstract][Full Text] [Related]
16. Nonalcoholic fatty liver disease: quantitative assessment of liver fat content by computed tomography, magnetic resonance imaging and proton magnetic resonance spectroscopy. Zhong L; Chen JJ; Chen J; Li L; Lin ZQ; Wang WJ; Xu JR J Dig Dis; 2009 Nov; 10(4):315-20. PubMed ID: 19906112 [TBL] [Abstract][Full Text] [Related]
17. Neonatal body composition: dual-energy X-ray absorptiometry, magnetic resonance imaging, and three-dimensional chemical shift imaging versus chemical analysis in piglets. Fusch C; Slotboom J; Fuehrer U; Schumacher R; Keisker A; Zimmermann W; Moessinger A; Boesch C; Blum J Pediatr Res; 1999 Oct; 46(4):465-73. PubMed ID: 10509370 [TBL] [Abstract][Full Text] [Related]
18. Extraneous lipid contamination in single-volume proton MR spectroscopy: phantom and human studies. Kwock L; Brown MA; Castillo M AJNR Am J Neuroradiol; 1997 Aug; 18(7):1349-57. PubMed ID: 9282868 [TBL] [Abstract][Full Text] [Related]
20. Total body dual X-ray absorptiometry is a good measure of both fat mass and fat-free mass in liver cirrhosis compared to "gold-standard" techniques. Melbourne Liver Group. Strauss BJ; Gibson PR; Stroud DB; Borovnicar DJ; Xiong DW; Keogh J Ann N Y Acad Sci; 2000 May; 904():55-62. PubMed ID: 10865710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]