BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 10739580)

  • 21. Demyelination, and remyelination by Schwann cells and oligodendrocytes after kainate-induced neuronal depletion in the central nervous system.
    Dusart I; Marty S; Peschanski M
    Neuroscience; 1992 Nov; 51(1):137-48. PubMed ID: 1465177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The relationship between type-1 astrocytes, Schwann cells and oligodendrocytes following transplantation of glial cell cultures into demyelinating lesions in the adult rat spinal cord.
    Blakemore WF; Crang AJ
    J Neurocytol; 1989 Aug; 18(4):519-28. PubMed ID: 2809635
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation.
    Liu S; Qu Y; Stewart TJ; Howard MJ; Chakrabortty S; Holekamp TF; McDonald JW
    Proc Natl Acad Sci U S A; 2000 May; 97(11):6126-31. PubMed ID: 10823956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aberrant remyelination of axons after heat injury in the dorsal funiculus of rat spinal cord.
    Sasaki M; Ide C
    Acta Neuropathol; 1991; 81(5):557-61. PubMed ID: 1713398
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Behaviour of oligodendrocytes and Schwann cells in an experimental model of toxic demyelination of the central nervous system.
    Graça DL; Bondan EF; Pereira LA; Fernandes CG; Maiorka PC
    Arq Neuropsiquiatr; 2001 Jun; 59(2-B):358-61. PubMed ID: 11460179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathways of migration of transplanted Schwann cells in the demyelinated mouse spinal cord.
    Baron-Van Evercooren A; Duhamel-Clerin E; Boutry JM; Hauw JJ; Gumpel M
    J Neurosci Res; 1993 Jul; 35(4):428-38. PubMed ID: 7689657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Failure of Schwann cells as supporting cells for adult neural progenitor cell grafts in the acutely injured spinal cord.
    Vroemen M; Caioni M; Bogdahn U; Weidner N
    Cell Tissue Res; 2007 Jan; 327(1):1-13. PubMed ID: 16941122
    [TBL] [Abstract][Full Text] [Related]  

  • 28. De- and remyelination in spinal roots during normal perinatal development in the cat: a brief summary of structural observations and a conceptual hypothesis.
    Berthold CH; Nilsson RI
    J Anat; 2002 Apr; 200(4):391-403. PubMed ID: 12090405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Minisegments of newborn rat optic nerves in vitro: gliogenesis and myelination.
    Omlin FX; Waldmeyer J
    Exp Brain Res; 1986; 65(1):189-99. PubMed ID: 2433143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The CNS-PNS transitional zone of the rat. Morphometric studies at cranial and spinal levels.
    Fraher JP
    Prog Neurobiol; 1992; 38(3):261-316. PubMed ID: 1546164
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relation between axons and oligodendroglial cells during initial myelination. I. The glial unit.
    Remahl S; Hilderbrand C
    J Neurocytol; 1990 Jun; 19(3):313-28. PubMed ID: 2391536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Schwann cell precursors: a favourable cell for myelin repair in the Central Nervous System.
    Woodhoo A; Sahni V; Gilson J; Setzu A; Franklin RJ; Blakemore WF; Mirsky R; Jessen KR
    Brain; 2007 Aug; 130(Pt 8):2175-85. PubMed ID: 17550908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Double myelination of axons in the sympathetic nervous system of the mouse. II. Mechanisms of formation.
    Kidd GJ; Heath JW
    J Neurocytol; 1988 Apr; 17(2):263-76. PubMed ID: 3204414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Progressive remodeling of the oligodendrocyte process arbor during myelinogenesis.
    Hardy RJ; Friedrich VL
    Dev Neurosci; 1996; 18(4):243-54. PubMed ID: 8911764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Myelination of the rat retina by transplantation of oligodendrocytes into 4-day-old hosts.
    Huang PP; Alliquant B; Carmel PW; Friedman ED
    Exp Neurol; 1991 Sep; 113(3):291-300. PubMed ID: 1915719
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Myelin-axon relationships established by rat vagal Schwann cells deep to the brainstem surface.
    Fraher JP; Rossiter JP
    J Comp Neurol; 1991 Feb; 304(2):253-60. PubMed ID: 2016420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regeneration of axons in the optic nerve of the adult Browman-Wyse (BW) mutant rat.
    Berry M; Hall S; Rees L; Carlile J; Wyse JP
    J Neurocytol; 1992 Jun; 21(6):426-48. PubMed ID: 1403007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The case for a central nervous system (CNS) origin for the Schwann cells that remyelinate CNS axons following concurrent loss of oligodendrocytes and astrocytes.
    Blakemore WF
    Neuropathol Appl Neurobiol; 2005 Feb; 31(1):1-10. PubMed ID: 15634226
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two temporal stages of oligodendroglial response to excitotoxic lesion in the gray matter of the adult rat brain.
    Jamin N; Junier MP; Grannec G; Cadusseau J
    Exp Neurol; 2001 Nov; 172(1):17-28. PubMed ID: 11681837
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generation of oligodendroglial progenitors in acute inflammatory demyelinating lesions of the rat brain stem is associated with demyelination rather than inflammation.
    Di Bello IC; Dawson MR; Levine JM; Reynolds R
    J Neurocytol; 1999; 28(4-5):365-81. PubMed ID: 10739577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.