BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 10741650)

  • 1. Piezoresistive sensors for scanning probe microscopy.
    Gotszalk T; Grabiec P; Rangelow IW
    Ultramicroscopy; 2000 Feb; 82(1-4):39-48. PubMed ID: 10741650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact atomic force microscopy using piezoresistive cantilevers in load force modulation mode.
    Biczysko P; Dzierka A; Jóźwiak G; Rudek M; Gotszalk T; Janus P; Grabiec P; Rangelow IW
    Ultramicroscopy; 2018 Jan; 184(Pt A):199-208. PubMed ID: 28950210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum size aspects of the piezoresistive effect in ultra thin piezoresistors.
    Ivanov T; Gotszalk T; Sulzbach T; Rangelow IW
    Ultramicroscopy; 2003; 97(1-4):377-84. PubMed ID: 12801692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity Improvement to Active Piezoresistive AFM Probes Using Focused Ion Beam Processing.
    Kunicki P; Angelov T; Ivanov T; Gotszalk T; Rangelow I
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A complementary-metal-oxide-semiconductor-field-effect-transistor-compatible atomic force microscopy tip fabrication process and integrated atomic force microscopy cantilevers fabricated with this process.
    Ono M; Lange D; Brand O; Hagleitner C; Baltes H
    Ultramicroscopy; 2002 May; 91(1-4):9-20. PubMed ID: 12211489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Piezoresistive temperature sensors fabricated by a surface micromachining CMOS MEMS process.
    Cai C; Tan J; Hua D; Qin M; Zhu N
    Sci Rep; 2018 Nov; 8(1):17065. PubMed ID: 30459315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The qPlus sensor, a powerful core for the atomic force microscope.
    Giessibl FJ
    Rev Sci Instrum; 2019 Jan; 90(1):011101. PubMed ID: 30709191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal nanometrology using piezoresistive SThM probes with metallic tips.
    Janus P; Sierakowski A; Rudek M; Kunicki P; Dzierka A; Biczysko P; Gotszalk T
    Ultramicroscopy; 2018 Oct; 193():104-110. PubMed ID: 29975873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-optical tip-sample distance control method for scanning near-field optical microscopy using a piezoresistive micro cantilever.
    Muramatsu H; Egawa A; Homma K; Kim JM; Takahashi H; Shirakawabe Y; Shimizu N
    J Microsc; 2001 Apr; 202(Pt 1):154-61. PubMed ID: 11298886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-sensing piezoresistive cantilever and its magnetic force microscopy applications.
    Takahashi H; Ando K; Shirakawabe Y
    Ultramicroscopy; 2002 May; 91(1-4):63-72. PubMed ID: 12211485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications.
    Morawski I; Spiegelberg R; Korte S; Voigtländer B
    Rev Sci Instrum; 2015 Dec; 86(12):123703. PubMed ID: 26724038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration of lateral force measurements in atomic force microscopy with a piezoresistive force sensor.
    Xie H; Vitard J; Haliyo S; Régnier S; Boukallel M
    Rev Sci Instrum; 2008 Mar; 79(3):033708. PubMed ID: 18377016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparative Study of Compressible and Conductive Vertically Aligned Carbon Nanotube Forest in Different Polymer Matrixes for High-Performance Piezoresistive Force Sensors.
    Paul SJ; Sharma I; Elizabeth I; Gahtori B; M MR; Titus SS; Chandra P; Gupta BK
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16946-16958. PubMed ID: 32196304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration and examination of piezoresistive Wheatstone bridge cantilevers for scanning probe microscopy.
    Gotszalk T; Grabiec P; Rangelow IW
    Ultramicroscopy; 2003; 97(1-4):385-9. PubMed ID: 12801693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices.
    Gysin U; Glatzel T; Schmölzer T; Schöner A; Reshanov S; Bartolf H; Meyer E
    Beilstein J Nanotechnol; 2015; 6():2485-97. PubMed ID: 26885461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast on-wafer electrical, mechanical, and electromechanical characterization of piezoresistive cantilever force sensors.
    Tosolini G; Villanueva LG; Perez-Murano F; Bausells J
    Rev Sci Instrum; 2012 Jan; 83(1):015002. PubMed ID: 22299978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review on Surface Stress-Based Miniaturized Piezoresistive SU-8 Polymeric Cantilever Sensors.
    Mathew R; Ravi Sankar A
    Nanomicro Lett; 2018; 10(2):35. PubMed ID: 30393684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Isolation and Immobilization Layers on the Electro-Mechanical Response of Piezoresistive Nano Cantilever Sensors.
    Mathew R; Sankar AR
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1636-1647. PubMed ID: 29448640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of MEMS piezoresistive pressure sensors using AFM.
    Patil SK; Celik-Butler Z; Butler DP
    Ultramicroscopy; 2010 Aug; 110(9):1154-60. PubMed ID: 20452125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Probe Dynamic Behaviors in Critical Dimension Atomic Force Microscopy.
    Feng SC; Joung CB; Vorburger TV
    J Res Natl Inst Stand Technol; 2009; 114(4):2-214. PubMed ID: 27504222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.