These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 10741678)

  • 21. Streptolysin O clearance through sequestration into blebs that bud passively from the plasma membrane.
    Keyel PA; Loultcheva L; Roth R; Salter RD; Watkins SC; Yokoyama WM; Heuser JE
    J Cell Sci; 2011 Jul; 124(Pt 14):2414-23. PubMed ID: 21693578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three dimensional (3D) analysis of the morphological changes induced by 50 Hz magnetic field exposure on human lymphoblastoid cells (Raji).
    Lisi A; Pozzi D; Pasquali E; Rieti S; Girasole M; Cricenti A; Generosi R; Serafino AL; Congiu-Castellano A; Ravagnan G; Giuliani L; Grimaldi S
    Bioelectromagnetics; 2000 Jan; 21(1):46-51. PubMed ID: 10615091
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specificity of streptolysin O in cytolysin-mediated translocation.
    Meehl MA; Caparon MG
    Mol Microbiol; 2004 Jun; 52(6):1665-76. PubMed ID: 15186416
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of nanosecond pulse electric fields on cellular elasticity.
    Dutta D; Asmar A; Stacey M
    Micron; 2015 May; 72():15-20. PubMed ID: 25732004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanomechanical properties of enucleated cells: contribution of the nucleus to the passive cell mechanics.
    Efremov YM; Kotova SL; Akovantseva AA; Timashev PS
    J Nanobiotechnology; 2020 Sep; 18(1):134. PubMed ID: 32943055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of non-contact hopping probe ion conductance microscopy to investigate dynamic morphology of live platelets.
    Liu X; Li Y; Zhu H; Zhao Z; Zhou Y; Zaske AM; Liu L; Li M; Lu H; Liu W; Dong JF; Zhang J; Zhang Y
    Platelets; 2015; 26(5):480-5. PubMed ID: 25101754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual modes of membrane binding direct pore formation by Streptolysin O.
    Mozola CC; Caparon MG
    Mol Microbiol; 2015 Sep; 97(6):1036-50. PubMed ID: 26059530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CLAFEM: Correlative light atomic force electron microscopy.
    Janel S; Werkmeister E; Bongiovanni A; Lafont F; Barois N
    Methods Cell Biol; 2017; 140():165-185. PubMed ID: 28528632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of a membrane skeleton in platelets.
    Fox JE; Boyles JK; Berndt MC; Steffen PK; Anderson LK
    J Cell Biol; 1988 May; 106(5):1525-38. PubMed ID: 3372587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visualizing the Domino-Like Prepore-to-Pore Transition of Streptolysin O by High-Speed AFM.
    Ariyama H
    J Membr Biol; 2023 Feb; 256(1):91-103. PubMed ID: 35980453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of streptolysin O on erythrocyte membranes, liposomes, and lipid dispersions. A protein-cholesterol interaction.
    Duncan JL; Schlegel R
    J Cell Biol; 1975 Oct; 67(1):160-74. PubMed ID: 1176529
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of Platelet Cytoskeleton in Platelet Biomechanics: Current and Emerging Methodologies and Their Potential Relevance for the Investigation of Inherited Platelet Disorders.
    Zaninetti C; Sachs L; Palankar R
    Hamostaseologie; 2020 Aug; 40(3):337-347. PubMed ID: 32726828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells.
    Mathur AB; Truskey GA; Reichert WM
    Biophys J; 2000 Apr; 78(4):1725-35. PubMed ID: 10733955
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemical and ultrastructural study of the disruption of blood platelets by streptolysin O.
    Launay JM; Alouf JE
    Biochim Biophys Acta; 1979 Sep; 556(2):278-91. PubMed ID: 534628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Regulation of the functional and mechanical properties of platelet and red blood cells by nitric oxide donors].
    Shamova EV; Bichan OD; Drozd ES; Gorudko IV; Chizhik SA; Shumaev KB; Cherenkevich SN; Vanin AF
    Biofizika; 2011; 56(2):265-71. PubMed ID: 21542356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Platelet hyperactivity and fibrin clot structure in transient ischemic attack individuals in the presence of metabolic syndrome: a microscopy and thromboelastography study.
    van Rooy MJ; Duim W; Ehlers R; Buys AV; Pretorius E
    Cardiovasc Diabetol; 2015 Jul; 14():86. PubMed ID: 26140921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-resolution three-dimensional imaging of the lateral plasma membrane of cochlear outer hair cells by atomic force microscopy.
    Le Grimellec C; Giocondi MC; Lenoir M; Vater M; Sposito G; Pujol R
    J Comp Neurol; 2002 Sep; 451(1):62-9. PubMed ID: 12209841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atomic force microscopy: probing the spatial organization, interactions and elasticity of microbial cell envelopes at molecular resolution.
    Scheuring S; Dufrêne YF
    Mol Microbiol; 2010 Mar; 75(6):1327-36. PubMed ID: 20132452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantifying CD95/cl-CD95L Implications in Cell Mechanics and Membrane Tension by Atomic Force Microscopy Based Force Measurements.
    Sadoun A; Puech PH
    Methods Mol Biol; 2017; 1557():139-151. PubMed ID: 28078590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterogeneous cell mechanical properties: an atomic force microscopy study.
    Simon A; Cohen-Bouhacina T; Aimé JP; Porte MC; Amédée J; Baquey C
    Cell Mol Biol (Noisy-le-grand); 2004 May; 50(3):255-66. PubMed ID: 15209346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.