These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
68 related articles for article (PubMed ID: 10741875)
1. Selective inhibition of neuronal nitric oxide synthase fails to alter the resting tension and the relaxant effect of bradykinin in isolated rat middle cerebral arteries. Benyó Z; Lacza Z; Görlach C; Wahl M Acta Physiol Hung; 1999; 86(2):161-5. PubMed ID: 10741875 [TBL] [Abstract][Full Text] [Related]
2. Functional importance of neuronal nitric oxide synthase in the endothelium of rat basilar arteries. Benyó Z; Lacza Z; Hortobágyi T; Görlach C; Wahl M Brain Res; 2000 Sep; 877(1):79-84. PubMed ID: 10980246 [TBL] [Abstract][Full Text] [Related]
3. Role of nitric oxide and thromboxane in the maintenance of cerebrovascular tone. Benyó Z; Görlach C; Wahl M Kidney Int Suppl; 1998 Sep; 67():S218-20. PubMed ID: 9736296 [TBL] [Abstract][Full Text] [Related]
4. Alterations in the modulation of cerebrovascular tone and blood flow by nitric oxide synthases in SHRsp with stroke. Daneshtalab N; Smeda JS Cardiovasc Res; 2010 Apr; 86(1):160-8. PubMed ID: 20008826 [TBL] [Abstract][Full Text] [Related]
5. Up-regulated neuronal nitric oxide synthase compensates coronary flow response to bradykinin in endothelial nitric oxide synthase-deficient mice. Talukder MA; Fujiki T; Morikawa K; Motoishi M; Kubota H; Morishita T; Tsutsui M; Takeshita A; Shimokawa H J Cardiovasc Pharmacol; 2004 Oct; 44(4):437-45. PubMed ID: 15454851 [TBL] [Abstract][Full Text] [Related]
6. Relatively selective neuronal nitric oxide synthase inhibition by 7-nitroindazole in monkey isolated cerebral arteries. Ayajiki K; Fujioka H; Okamura T; Toda N Eur J Pharmacol; 2001 Jul; 423(2-3):179-83. PubMed ID: 11448483 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the vasodilatory effects of bradykinin in isolated dog renal arteries and in buffer-perfused dog kidneys. Malomvölgyi B; Hadházy P; Tekes K; Koltai MZ; Pogátsa G Acta Physiol Hung; 1996; 84(1):9-18. PubMed ID: 8993670 [TBL] [Abstract][Full Text] [Related]
8. Role of neuronal nitric-oxide synthase in estrogen-induced relaxation in rat resistance arteries. Lekontseva O; Chakrabarti S; Jiang Y; Cheung CC; Davidge ST J Pharmacol Exp Ther; 2011 Nov; 339(2):367-75. PubMed ID: 21807885 [TBL] [Abstract][Full Text] [Related]
9. Role of nitric oxide synthase isoforms for ophthalmic artery reactivity in mice. Laspas P; Goloborodko E; Sniatecki JJ; Kordasz ML; Manicam C; Wojnowski L; Li H; Patzak A; Pfeiffer N; Gericke A Exp Eye Res; 2014 Oct; 127():1-8. PubMed ID: 25017185 [TBL] [Abstract][Full Text] [Related]
10. Cerebral microvascular dilation during hypotension and decreased oxygen tension: a role for nNOS. Bauser-Heaton HD; Bohlen HG Am J Physiol Heart Circ Physiol; 2007 Oct; 293(4):H2193-201. PubMed ID: 17630350 [TBL] [Abstract][Full Text] [Related]
11. Heterogeneity of endothelium-dependent vasodilation in pressurized cerebral and small mesenteric resistance arteries of the rat. Lagaud GJ; Skarsgard PL; Laher I; van Breemen C J Pharmacol Exp Ther; 1999 Aug; 290(2):832-9. PubMed ID: 10411599 [TBL] [Abstract][Full Text] [Related]
12. Role of endothelium-derived bradykinin in the control of vascular tone. Hecker M; Dambacher T; Busse R J Cardiovasc Pharmacol; 1992; 20 Suppl 9():S55-61. PubMed ID: 1282631 [TBL] [Abstract][Full Text] [Related]
13. A comparison of the effects of L-NAME, 7-NI and L-NIL on carrageenan-induced hindpaw oedema and NOS activity. Handy RL; Moore PK Br J Pharmacol; 1998 Mar; 123(6):1119-26. PubMed ID: 9559895 [TBL] [Abstract][Full Text] [Related]
14. Endothelium-dependent vasodilation of cerebral arteries is altered with simulated microgravity through nitric oxide synthase and EDHF mechanisms. Prisby RD; Wilkerson MK; Sokoya EM; Bryan RM; Wilson E; Delp MD J Appl Physiol (1985); 2006 Jul; 101(1):348-53. PubMed ID: 16627679 [TBL] [Abstract][Full Text] [Related]
15. Role of neuronal nitric oxide in the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle of healthy rats. Jendzjowsky NG; DeLorey DS J Appl Physiol (1985); 2013 Jul; 115(1):97-106. PubMed ID: 23640592 [TBL] [Abstract][Full Text] [Related]
16. Differential effects of nitric oxide synthase inhibitors on endothelium-dependent and nitrergic nerve-mediated vasodilatation in the bovine ciliary artery. Overend J; Martin W Br J Pharmacol; 2007 Feb; 150(4):488-93. PubMed ID: 17211453 [TBL] [Abstract][Full Text] [Related]
17. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries. Prieto D; Simonsen U; Hernández M; García-Sacristán A Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568 [TBL] [Abstract][Full Text] [Related]
18. Local uncoupling of the cerebrovascular and metabolic responses to somatosensory stimulation after neuronal nitric oxide synthase inhibition. Cholet N; Seylaz J; Lacombe P; Bonvento G J Cereb Blood Flow Metab; 1997 Nov; 17(11):1191-201. PubMed ID: 9390651 [TBL] [Abstract][Full Text] [Related]
19. A defect of neuronal nitric oxide synthase increases xanthine oxidase-derived superoxide anion and attenuates the control of myocardial oxygen consumption by nitric oxide derived from endothelial nitric oxide synthase. Kinugawa S; Huang H; Wang Z; Kaminski PM; Wolin MS; Hintze TH Circ Res; 2005 Feb; 96(3):355-62. PubMed ID: 15637297 [TBL] [Abstract][Full Text] [Related]
20. Alteration of flow-induced dilatation in mesenteric resistance arteries of L-NAME treated rats and its partial association with induction of cyclo-oxygenase-2. Henrion D; Dechaux E; Dowell FJ; Maclour J; Samuel JL; Lévy BI; Michel JB Br J Pharmacol; 1997 May; 121(1):83-90. PubMed ID: 9146891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]