These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 10742039)

  • 1. Phylogeny reconstruction using duplicate genes.
    Simmons MP; Donovan Bailey C; Nixon KC
    Mol Biol Evol; 2000 Apr; 17(4):469-73. PubMed ID: 10742039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The root of angiosperm phylogeny inferred from duplicate phytochrome genes.
    Mathews S; Donoghue MJ
    Science; 1999 Oct; 286(5441):947-50. PubMed ID: 10542147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uninode coding vs gene tree parsimony for phylogenetic reconstruction using duplicate genes.
    Simmons MP; Freudenstein JV
    Mol Phylogenet Evol; 2002 Jun; 23(3):481-98. PubMed ID: 12099800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic relationships of B-related phytochromes in the Brassicaceae: Redundancy and the persistence of phytochrome D.
    Mathews S; McBreen K
    Mol Phylogenet Evol; 2008 Nov; 49(2):411-23. PubMed ID: 18768161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene tree parsimony vs uninode coding for phylogenetic reconstruction.
    Cotton JA; Page RD
    Mol Phylogenet Evol; 2003 Nov; 29(2):298-308. PubMed ID: 13678685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Duplicate genes and the root of angiosperms, with an example using phytochrome sequences.
    Donoghue MJ; Mathews S
    Mol Phylogenet Evol; 1998 Jun; 9(3):489-500. PubMed ID: 9667997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergence of the phytochrome gene family predates angiosperm evolution and suggests that Selaginella and Equisetum arose prior to Psilotum.
    Kolukisaoglu HU; Marx S; Wiegmann C; Hanelt S; Schneider-Poetsch HA
    J Mol Evol; 1995 Sep; 41(3):329-37. PubMed ID: 7563118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytochrome evolution in green and nongreen plants.
    Mathews S
    J Hered; 2005; 96(3):197-204. PubMed ID: 15695552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole Genome Duplication in Plants: Implications for Evolutionary Analysis.
    Sankoff D; Zheng C
    Methods Mol Biol; 2018; 1704():291-315. PubMed ID: 29277870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene duplication within the Green Lineage: the case of TEL genes.
    Charon C; Bruggeman Q; Thareau V; Henry Y
    J Exp Bot; 2012 Sep; 63(14):5061-77. PubMed ID: 22865910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The PHYC gene of Arabidopsis. Absence of the third intron found in PHYA and PHYB.
    Cowl JS; Hartley N; Xie DX; Whitelam GC; Murphy GP; Harberd NP
    Plant Physiol; 1994 Oct; 106(2):813-4. PubMed ID: 7991704
    [No Abstract]   [Full Text] [Related]  

  • 12. A duplicate gene rooting of seed plants and the phylogenetic position of flowering plants.
    Mathews S; Clements MD; Beilstein MA
    Philos Trans R Soc Lond B Biol Sci; 2010 Feb; 365(1539):383-95. PubMed ID: 20047866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogeny and domain evolution in the APETALA2-like gene family.
    Kim S; Soltis PS; Wall K; Soltis DE
    Mol Biol Evol; 2006 Jan; 23(1):107-20. PubMed ID: 16151182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytochrome evolution: a phylogenetic tree with the first complete sequence of phytochrome from a cryptogamic plant (Selaginella martensii spring).
    Hanelt S; Braun B; Marx S; Schneider-Poetsch HA
    Photochem Photobiol; 1992 Nov; 56(5):751-8. PubMed ID: 1475321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversification of ftsZ during early land plant evolution.
    Rensing SA; Kiessling J; Reski R; Decker EL
    J Mol Evol; 2004 Feb; 58(2):154-62. PubMed ID: 15042335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phytochrome gene family in grasses (Poaceae): a phylogeny and evidence that grasses have a subset of the loci found in dicot angiosperms.
    Mathews S; Sharrock RA
    Mol Biol Evol; 1996 Oct; 13(8):1141-50. PubMed ID: 8865668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extensive divergence in alternative splicing patterns after gene and genome duplication during the evolutionary history of Arabidopsis.
    Zhang PG; Huang SZ; Pin AL; Adams KL
    Mol Biol Evol; 2010 Jul; 27(7):1686-97. PubMed ID: 20185454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogeny of the Celastraceae inferred from 26S nuclear ribosomal DNA, phytochrome B, rbcL, atpB, and morphology.
    Simmons MP; Savolainen V; Clevinger CC; Archer RH; Davis JI
    Mol Phylogenet Evol; 2001 Jun; 19(3):353-66. PubMed ID: 11399146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species.
    Gupta RS
    Mol Biol Evol; 1995 Nov; 12(6):1063-73. PubMed ID: 8524040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining the RNA-binding glycine-rich (RBG) gene superfamily: new insights into nomenclature, phylogeny, and evolutionary trends obtained by genome-wide comparative analysis of Arabidopsis, Chinese cabbage, rice and maize genomes.
    Krishnamurthy P; Kim JA; Jeong MJ; Kang CH; Lee SI
    Mol Genet Genomics; 2015 Dec; 290(6):2279-95. PubMed ID: 26123085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.