These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 10742039)

  • 41. GAI homologues in the Hawaiian silversword alliance (Asteraceae-Madiinae): molecular evolution of growth regulators in a rapidly diversifying plant lineage.
    Remington DL; Purugganan MD
    Mol Biol Evol; 2002 Sep; 19(9):1563-74. PubMed ID: 12200483
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction.
    Bolle C; Koncz C; Chua NH
    Genes Dev; 2000 May; 14(10):1269-78. PubMed ID: 10817761
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diversification of non-TIR class NB-LRR genes in relation to whole-genome duplication events in Arabidopsis.
    Nobuta K; Ashfield T; Kim S; Innes RW
    Mol Plant Microbe Interact; 2005 Feb; 18(2):103-9. PubMed ID: 15720078
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phytochrome E controls light-induced germination of Arabidopsis.
    Hennig L; Stoddart WM; Dieterle M; Whitelam GC; Schäfer E
    Plant Physiol; 2002 Jan; 128(1):194-200. PubMed ID: 11788765
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigating ancient duplication events in the Arabidopsis genome.
    Raes J; Vandepoele K; Simillion C; Saeys Y; Van de Peer Y
    J Struct Funct Genomics; 2003; 3(1-4):117-29. PubMed ID: 12836691
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unraveling the evolution and regulation of the alternative oxidase gene family in plants.
    Pu XJ; Lv X; Lin HH
    Dev Genes Evol; 2015 Nov; 225(6):331-9. PubMed ID: 26438244
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An ILP solution for the gene duplication problem.
    Chang WC; Burleigh GJ; Fernández-Baca DF; Eulenstein O
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S14. PubMed ID: 21342543
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reconciling gene and genome duplication events: using multiple nuclear gene families to infer the phylogeny of the aquatic plant family Pontederiaceae.
    Ness RW; Graham SW; Barrett SC
    Mol Biol Evol; 2011 Nov; 28(11):3009-18. PubMed ID: 21633114
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phytochrome genes: studies using the tools of molecular biology and photomorphogenetic mutants.
    Tomizawa K; Nayatani A; Furuya M
    Photochem Photobiol; 1990 Jul; 52(1):265-75. PubMed ID: 2204945
    [No Abstract]   [Full Text] [Related]  

  • 50. Molecular evolution: old branches on the phytochrome family tree.
    Pepper AE
    Curr Biol; 1998 Feb; 8(4):R117-20. PubMed ID: 9501973
    [No Abstract]   [Full Text] [Related]  

  • 51. Gene regulation by phytochrome.
    Nagy F; Kay SA; Chua NH
    Trends Genet; 1988 Feb; 4(2):37-42. PubMed ID: 3072718
    [No Abstract]   [Full Text] [Related]  

  • 52. New synthesis--duplicated genes in the ecological interactions of plants with their environment.
    Pichersky E
    J Chem Ecol; 2011 Sep; 37(9):923. PubMed ID: 21845433
    [No Abstract]   [Full Text] [Related]  

  • 53. Pathogen to commensal? Longitudinal within-host population dynamics, evolution, and adaptation during a chronic >16-year Burkholderia pseudomallei infection.
    Pearson T; Sahl JW; Hepp CM; Handady K; Hornstra H; Vazquez AJ; Settles E; Mayo M; Kaestli M; Williamson CHD; Price EP; Sarovich DS; Cook JM; Wolken SR; Bowen RA; Tuanyok A; Foster JT; Drees KP; Kidd TJ; Bell SC; Currie BJ; Keim P
    PLoS Pathog; 2020 Mar; 16(3):e1008298. PubMed ID: 32134991
    [TBL] [Abstract][Full Text] [Related]  

  • 54. STRIDE: Species Tree Root Inference from Gene Duplication Events.
    Emms DM; Kelly S
    Mol Biol Evol; 2017 Dec; 34(12):3267-3278. PubMed ID: 29029342
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genomes-based phylogeny of the genus Xanthomonas.
    Rodriguez-R LM; Grajales A; Arrieta-Ortiz ML; Salazar C; Restrepo S; Bernal A
    BMC Microbiol; 2012 Mar; 12():43. PubMed ID: 22443110
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inferring angiosperm phylogeny from EST data with widespread gene duplication.
    Sanderson MJ; McMahon MM
    BMC Evol Biol; 2007 Feb; 7 Suppl 1(Suppl 1):S3. PubMed ID: 17288576
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phylogeny reconstruction using duplicate genes.
    Simmons MP; Donovan Bailey C; Nixon KC
    Mol Biol Evol; 2000 Apr; 17(4):469-73. PubMed ID: 10742039
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The root of angiosperm phylogeny inferred from duplicate phytochrome genes.
    Mathews S; Donoghue MJ
    Science; 1999 Oct; 286(5441):947-50. PubMed ID: 10542147
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Uninode coding vs gene tree parsimony for phylogenetic reconstruction using duplicate genes.
    Simmons MP; Freudenstein JV
    Mol Phylogenet Evol; 2002 Jun; 23(3):481-98. PubMed ID: 12099800
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phylogenetic relationships of B-related phytochromes in the Brassicaceae: Redundancy and the persistence of phytochrome D.
    Mathews S; McBreen K
    Mol Phylogenet Evol; 2008 Nov; 49(2):411-23. PubMed ID: 18768161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.