BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 10742111)

  • 21. Monoclonal antibodies to inner ear antigens: II. Antigens expressed in sensory cell stereocilia.
    Ptok M; Nair TS; Altschuler RA; Schacht J; Carey TE
    Hear Res; 1991 Dec; 57(1):79-90. PubMed ID: 1774215
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cochlear hair cell stereocilia loss in LP/J mice with bone dysplasia of the middle ear.
    Chole RA; Chiu M
    Ann Otol Rhinol Laryngol; 1989 Jun; 98(6):461-5. PubMed ID: 2729832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell density and N-cadherin interactions regulate cell proliferation in the sensory epithelia of the inner ear.
    Warchol ME
    J Neurosci; 2002 Apr; 22(7):2607-16. PubMed ID: 11923426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immunoelectron microscopic and immunofluorescent localization of cytoskeletal and muscle-like contractile proteins in inner ear sensory hair cells.
    Slepecky N; Chamberlain SC
    Hear Res; 1985; 20(3):245-60. PubMed ID: 3910630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calbindin (CaBP 28 kDa) appearance and distribution during development of the mouse inner ear.
    Dechesne CJ; Thomasset M
    Brain Res; 1988 May; 468(2):233-42. PubMed ID: 3260120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emx2 lineage tracing reveals antecedent patterns of planar polarity in the mouse inner ear.
    Goodrich EJ; Deans MR
    Development; 2024 May; 151(10):. PubMed ID: 38804528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emx2 lineage tracing reveals antecedent patterns of planar polarity in the mouse inner ear.
    Goodrich EJ; Deans MR
    Development; 2024 May; 151(10):. PubMed ID: 38682291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Residual microRNA expression dictates the extent of inner ear development in conditional Dicer knockout mice.
    Soukup GA; Fritzsch B; Pierce ML; Weston MD; Jahan I; McManus MT; Harfe BD
    Dev Biol; 2009 Apr; 328(2):328-41. PubMed ID: 19389351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Downregulation of otospiralin, a novel inner ear protein, causes hair cell degeneration and deafness.
    Delprat B; Boulanger A; Wang J; Beaudoin V; Guitton MJ; Ventéo S; Dechesne CJ; Pujol R; Lavigne-Rebillard M; Puel JL; Hamel CP
    J Neurosci; 2002 Mar; 22(5):1718-25. PubMed ID: 11880501
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calcium-binding sites on sensory processes in vertebrate hair cells.
    Moran DT; Rowley JC; Asher DL
    Proc Natl Acad Sci U S A; 1981 Jun; 78(6):3954-8. PubMed ID: 6973762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of the sensory receptor cells in the utricular macula.
    Van De Water TR; Wersäll J; Anniko M; Nordeman H
    Otolaryngology; 1978; 86(2):ORL297-304. PubMed ID: 113736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CIB2 and CIB3 Regulate Stereocilia Maintenance and Mechanoelectrical Transduction in Mouse Vestibular Hair Cells.
    Wang X; Liu S; Cheng Q; Qu C; Ren R; Du H; Li N; Yan K; Wang Y; Xiong W; Xu Z
    J Neurosci; 2023 May; 43(18):3219-3231. PubMed ID: 37001993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of alpha-actinin in the stereocilia of hair cells of the inner ear: immunohistochemical localization.
    Zine EA; Romand R
    Neuroreport; 1993 Sep; 4(12):1350-2. PubMed ID: 8260618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ripor2 is involved in auditory hair cell stereociliary bundle structure and orientation.
    Diaz-Horta O; Abad C; Cengiz FB; Bademci G; Blackwelder P; Walz K; Tekin M
    J Mol Med (Berl); 2018 Nov; 96(11):1227-1238. PubMed ID: 30280293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immunohistochemical localization of nonerythroid spectrin (fodrin) in the sensory cells of the vestibular end organs of the rat and guinea pig.
    Pirvola U; Ylikoski J; Virtanen I
    ORL J Otorhinolaryngol Relat Spec; 1990; 52(2):127-32. PubMed ID: 2183128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intermediate filaments in the newborn inner ear of the mouse.
    Anniko M; Thornell LE; Gustavsson H; Virtanen I
    ORL J Otorhinolaryngol Relat Spec; 1986; 48(2):98-106. PubMed ID: 3517747
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Myosin-I isozymes in neonatal rodent auditory and vestibular epithelia.
    Dumont RA; Zhao YD; Holt JR; Bähler M; Gillespie PG
    J Assoc Res Otolaryngol; 2002 Dec; 3(4):375-89. PubMed ID: 12486594
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional Organotypic Cultures of Vestibular and Auditory Sensory Organs.
    Gnedeva K; Hudspeth AJ; Segil N
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 29912206
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inner ear defects induced by null mutation of the isk gene.
    Vetter DE; Mann JR; Wangemann P; Liu J; McLaughlin KJ; Lesage F; Marcus DC; Lazdunski M; Heinemann SF; Barhanin J
    Neuron; 1996 Dec; 17(6):1251-64. PubMed ID: 8982171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms that regulate mechanosensory hair cell differentiation.
    Müller U; Littlewood-Evans A
    Trends Cell Biol; 2001 Aug; 11(8):334-42. PubMed ID: 11489639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.