These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 10742245)
1. Role of molybdate and other transition metals in the accumulation of protochelin by Azotobacter vinelandii. Cornish AS; Page WJ Appl Environ Microbiol; 2000 Apr; 66(4):1580-6. PubMed ID: 10742245 [TBL] [Abstract][Full Text] [Related]
2. The catecholate siderophores of Azotobacter vinelandii: their affinity for iron and role in oxygen stress management. Cornish AS; Page WJ Microbiology (Reading); 1998 Jul; 144(7):1747-1754. PubMed ID: 33757230 [TBL] [Abstract][Full Text] [Related]
3. Catechol siderophores control tungsten uptake and toxicity in the nitrogen-fixing bacterium Azotobacter vinelandii. Wichard T; Bellenger JP; Loison A; Kraepiel AM Environ Sci Technol; 2008 Apr; 42(7):2408-13. PubMed ID: 18504973 [TBL] [Abstract][Full Text] [Related]
4. The csbX gene of Azotobacter vinelandii encodes an MFS efflux pump required for catecholate siderophore export. Page WJ; Kwon E; Cornish AS; Tindale AE FEMS Microbiol Lett; 2003 Nov; 228(2):211-6. PubMed ID: 14638426 [TBL] [Abstract][Full Text] [Related]
5. Siderophore production in Azotobacter vinelandii in response to Fe-, Mo- and V-limitation. McRose DL; Baars O; Morel FMM; Kraepiel AML Environ Microbiol; 2017 Sep; 19(9):3595-3605. PubMed ID: 28703469 [TBL] [Abstract][Full Text] [Related]
6. Complexation of oxoanions and cationic metals by the biscatecholate siderophore azotochelin. Bellenger JP; Arnaud-Neu F; Asfari Z; Myneni SC; Stiefel EI; Kraepiel AM J Biol Inorg Chem; 2007 Mar; 12(3):367-76. PubMed ID: 17171370 [TBL] [Abstract][Full Text] [Related]
7. Trace metal complexation by the triscatecholate siderophore protochelin: structure and stability. Harrington JM; Bargar JR; Jarzecki AA; Roberts JG; Sombers LA; Duckworth OW Biometals; 2012 Apr; 25(2):393-412. PubMed ID: 22187125 [TBL] [Abstract][Full Text] [Related]
8. Azotobacter vinelandii gene clusters for two types of peptidic and catechol siderophores produced in response to molybdenum. Yoneyama F; Yamamoto M; Hashimoto W; Murata K J Appl Microbiol; 2011 Oct; 111(4):932-8. PubMed ID: 21794033 [TBL] [Abstract][Full Text] [Related]
9. The iron-binding properties of aminochelin, the mono(catecholamide) siderophore of Azotobacter vinelandii. Khodr HH; Hider RC; Duhme-Klair AK J Biol Inorg Chem; 2002 Sep; 7(7-8):891-6. PubMed ID: 12203027 [TBL] [Abstract][Full Text] [Related]
10. Dual regulation of catecholate siderophore biosynthesis in Azotobacter vinelandii by iron and oxidative stress. Tindale AE; Mehrotra M; Ottem D; Page WJ Microbiology (Reading); 2000 Jul; 146 ( Pt 7)():1617-1626. PubMed ID: 10878126 [TBL] [Abstract][Full Text] [Related]
11. Vanadium requirements and uptake kinetics in the dinitrogen-fixing bacterium Azotobacter vinelandii. Bellenger JP; Wichard T; Kraepiel AM Appl Environ Microbiol; 2008 Mar; 74(5):1478-84. PubMed ID: 18192412 [TBL] [Abstract][Full Text] [Related]
12. The Siderophore Metabolome of Azotobacter vinelandii. Baars O; Zhang X; Morel FM; Seyedsayamdost MR Appl Environ Microbiol; 2016 Jan; 82(1):27-39. PubMed ID: 26452553 [TBL] [Abstract][Full Text] [Related]
13. Mutation of cytochrome bd quinol oxidase results in reduced stationary phase survival, iron deprivation, metal toxicity and oxidative stress in Azotobacter vinelandii. Edwards SE; Loder CS; Wu G; Corker H; Bainbridge BW; Hill S; Poole RK FEMS Microbiol Lett; 2000 Apr; 185(1):71-7. PubMed ID: 10731609 [TBL] [Abstract][Full Text] [Related]
14. Role of the siderophore azotobactin in the bacterial acquisition of nitrogenase metal cofactors. Wichard T; Bellenger JP; Morel FM; Kraepiel AM Environ Sci Technol; 2009 Oct; 43(19):7218-24. PubMed ID: 19848125 [TBL] [Abstract][Full Text] [Related]
15. Multiple roles of siderophores in free-living nitrogen-fixing bacteria. Kraepiel AM; Bellenger JP; Wichard T; Morel FM Biometals; 2009 Aug; 22(4):573-81. PubMed ID: 19277875 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical and Solution Structural Characterization of Fe(III) Azotochelin Complexes: Examining the Coordination Behavior of a Tetradentate Siderophore. Baranska NG; Parkin A; Duhme-Klair AK Inorg Chem; 2022 Dec; 61(48):19172-19182. PubMed ID: 36251475 [TBL] [Abstract][Full Text] [Related]
17. Mutational analysis of genes of the mod locus involved in molybdenum transport, homeostasis, and processing in Azotobacter vinelandii. Mouncey NJ; Mitchenall LA; Pau RN J Bacteriol; 1995 Sep; 177(18):5294-302. PubMed ID: 7665518 [TBL] [Abstract][Full Text] [Related]
18. Bioavailability of mineral-associated trace metals as cofactors for nitrogen fixation by Azotobacter vinelandii. Srivastava S; Dong H; Baars O; Sheng Y Geobiology; 2023 Jul; 21(4):507-519. PubMed ID: 36852450 [TBL] [Abstract][Full Text] [Related]
19. Ferric reductase activity in Azotobacter vinelandii and its inhibition by Zn2+. Huyer M; Page WJ J Bacteriol; 1989 Jul; 171(7):4031-7. PubMed ID: 2525550 [TBL] [Abstract][Full Text] [Related]
20. Direct quantification of bacterial molybdenum and iron metallophores with ultra-high-performance liquid chromatography coupled to time-of-flight mass spectrometry. Deicke M; Bellenger JP; Wichard T J Chromatogr A; 2013 Jul; 1298():50-60. PubMed ID: 23726243 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]