These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 10742259)
1. Design and application of a biosensor for monitoring toxicity of compounds to eukaryotes. Hollis RP; Killham K; Glover LA Appl Environ Microbiol; 2000 Apr; 66(4):1676-9. PubMed ID: 10742259 [TBL] [Abstract][Full Text] [Related]
2. Adaptative responses in yeast to the herbicide 2-methyl-4-chlorophenoxyacetic acid at the level of intracellular pH homeostasis. Guadalupe Cabral M; Sá-Correia I; Viegas CA J Appl Microbiol; 2004; 96(3):603-12. PubMed ID: 14962141 [TBL] [Abstract][Full Text] [Related]
3. Toxicity of chlorinated phenoxyacetic acid herbicides in the experimental eukaryotic model Saccharomyces cerevisiae: role of pH and of growth phase and size of the yeast cell population. Cabral MG; Viegas CA; Teixeira MC; Sá-Correia I Chemosphere; 2003 Apr; 51(1):47-54. PubMed ID: 12586155 [TBL] [Abstract][Full Text] [Related]
4. Suitability of Macrolampis firefly and Pyrearinus click beetle luciferases for bacterial light off toxicity biosensor. Gabriel GV; Lopes PS; Viviani VR Anal Biochem; 2014 Jan; 445():73-9. PubMed ID: 24071473 [TBL] [Abstract][Full Text] [Related]
5. Novel cyanobacterial biosensor for detection of herbicides. Shao CY; Howe CJ; Porter AJ; Glover LA Appl Environ Microbiol; 2002 Oct; 68(10):5026-33. PubMed ID: 12324353 [TBL] [Abstract][Full Text] [Related]
6. A new, sensitive marine microalgal recombinant biosensor using luminescence monitoring for toxicity testing of antifouling biocides. Sanchez-Ferandin S; Leroy F; Bouget FY; Joux F Appl Environ Microbiol; 2013 Jan; 79(2):631-8. PubMed ID: 23144143 [TBL] [Abstract][Full Text] [Related]
7. Prêt-à-porter nanoYESα and nanoYESβ bioluminescent cell biosensors for ultrarapid and sensitive screening of endocrine-disrupting chemicals. Lopreside A; Calabretta MM; Montali L; Ferri M; Tassoni A; Branchini BR; Southworth T; D'Elia M; Roda A; Michelini E Anal Bioanal Chem; 2019 Jul; 411(19):4937-4949. PubMed ID: 30972468 [TBL] [Abstract][Full Text] [Related]
8. Assessment of the potential toxicity of herbicides and their degradation products to nontarget cells using two microorganisms, the bacteria Vibrio fischeri and the ciliate Tetrahymena pyriformis. Bonnet JL; Bonnemoy F; Dusser M; Bohatier J Environ Toxicol; 2007 Feb; 22(1):78-91. PubMed ID: 17295264 [TBL] [Abstract][Full Text] [Related]
9. A new recombinant cell-based bioluminescent assay for sensitive androgen-like compound detection. Michelini E; Leskinen P; Virta M; Karp M; Roda A Biosens Bioelectron; 2005 May; 20(11):2261-7. PubMed ID: 15797324 [TBL] [Abstract][Full Text] [Related]
10. Whole cell biosensors--electrochemical and optical approaches to ecotoxicity testing. Bentley A; Atkinson A; Jezek J; Rawson DM Toxicol In Vitro; 2001; 15(4-5):469-75. PubMed ID: 11566580 [TBL] [Abstract][Full Text] [Related]
11. One-step measurement of firefly luciferase activity in yeast. Leskinen P; Virta M; Karp M Yeast; 2003 Oct; 20(13):1109-13. PubMed ID: 14558144 [TBL] [Abstract][Full Text] [Related]
12. Preparation and Assay of Simple Light off Biosensor Based on Immobilized Bioluminescent Bacteria for General Toxicity Assays. Gabriel GV; Viviani VR Methods Mol Biol; 2016; 1461():217-23. PubMed ID: 27424908 [TBL] [Abstract][Full Text] [Related]
13. Comparative analysis of transcriptomic responses to sub-lethal levels of six environmentally relevant pesticides in Saccharomyces cerevisiae. Gil FN; Gonçalves AC; Becker JD; Viegas CA Ecotoxicology; 2018 Sep; 27(7):871-889. PubMed ID: 29611082 [TBL] [Abstract][Full Text] [Related]
14. Measurement of ATP concentrations in mitochondria of living cells using luminescence and fluorescence approaches. Morciano G; Imamura H; Patergnani S; Pedriali G; Giorgi C; Pinton P Methods Cell Biol; 2020; 155():199-219. PubMed ID: 32183959 [TBL] [Abstract][Full Text] [Related]
15. Engineering the metal sensitive sites in Macrolampis sp2 firefly luciferase and use as a novel bioluminescent ratiometric biosensor for heavy metals. Gabriel GV; Viviani VR Anal Bioanal Chem; 2016 Dec; 408(30):8881-8893. PubMed ID: 27815607 [TBL] [Abstract][Full Text] [Related]
16. A novel bioluminescent NanoLuc yeast-estrogen screen biosensor (nanoYES) with a compact wireless camera for effect-based detection of endocrine-disrupting chemicals. Cevenini L; Lopreside A; Calabretta MM; D'Elia M; Simoni P; Michelini E; Roda A Anal Bioanal Chem; 2018 Feb; 410(4):1237-1246. PubMed ID: 28965124 [TBL] [Abstract][Full Text] [Related]
17. Use of bacterial biosensors to interpret the toxicity and mixture toxicity of herbicides in freshwater. Strachan G; Preston S; Maciel H; Porter AJ; Paton GI Water Res; 2001 Oct; 35(14):3490-5. PubMed ID: 11547873 [TBL] [Abstract][Full Text] [Related]
18. Analytical strategies for improving the robustness and reproducibility of bioluminescent microbial bioreporters. Roda A; Roda B; Cevenini L; Michelini E; Mezzanotte L; Reschiglian P; Hakkila K; Virta M Anal Bioanal Chem; 2011 Jul; 401(1):201-11. PubMed ID: 21603915 [TBL] [Abstract][Full Text] [Related]
19. Luminescent probes and visualization of bioluminescence. Michelini E; Cevenini L; Mezzanotte L; Roda A Methods Mol Biol; 2009; 574():1-13. PubMed ID: 19685295 [TBL] [Abstract][Full Text] [Related]
20. Re-engineering of CUP1 promoter and Cup2/Ace1 transactivator to convert Saccharomyces cerevisiae into a whole-cell eukaryotic biosensor capable of detecting 10 nM of bioavailable copper. Žunar B; Mosrin C; Bénédetti H; Vallée B Biosens Bioelectron; 2022 Oct; 214():114502. PubMed ID: 35785751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]