These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 10742373)

  • 1. Adverse effects of nicotine and interleukin-1beta on autoresuscitation after apnea in piglets: implications for sudden infant death syndrome.
    Frøen JF; Akre H; Stray-Pedersen B; Saugstad OD
    Pediatrics; 2000 Apr; 105(4):E52. PubMed ID: 10742373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonged apneas and hypoxia mediated by nicotine and endotoxin in piglets.
    Frøen JF; Akre H; Stray-Pedersen B; Saugstad OD
    Biol Neonate; 2002; 81(2):119-25. PubMed ID: 11844882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatal apnea in piglets by way of laryngeal chemoreflex: postmortem findings as anatomic correlates of sudden infant death syndrome in the human infant.
    Richardson MA; Adams J
    Laryngoscope; 2005 Jul; 115(7):1163-9. PubMed ID: 15995501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of successful and failed autoresuscitation in human infants, including those dying of SIDS.
    Sridhar R; Thach BT; Kelly DH; Henslee JA
    Pediatr Pulmonol; 2003 Aug; 36(2):113-22. PubMed ID: 12833490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interleukin-1β and interleukin-6 enhance thermal prolongation of the LCR in decerebrate piglets.
    Xia L; Bartlett D; Leiter JC
    Respir Physiol Neurobiol; 2016 Aug; 230():44-53. PubMed ID: 27181326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in apnea and autoresuscitation in piglets after intravenous and intrathecal interleukin-1 beta injection.
    Stoltenberg L; Sundar T; Almaas R; Storm H; Rognum TO; Saugstad OD
    J Perinat Med; 1994; 22(5):421-32. PubMed ID: 7791018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peripheral neuroplasticity of respiratory chemoreflexes, induced by prenatal nicotinic exposure: Implication for SIDS.
    Xu F; Zhao L; Zhuang J; Gao X
    Respir Physiol Neurobiol; 2023 Jul; 313():104053. PubMed ID: 37019251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible pathomechanisms of sudden infant death syndrome: key role of chronic hypoxia, infection/inflammation states, cytokine irregularities, and metabolic trauma in genetically predisposed infants.
    Prandota J
    Am J Ther; 2004; 11(6):517-46. PubMed ID: 15543094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre- and early postnatal nicotine exposure exacerbates autoresuscitation failure in serotonin-deficient rat neonates.
    Lee SY; Sirieix CM; Nattie E; Li A
    J Physiol; 2018 Dec; 596(23):5977-5991. PubMed ID: 30008184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laryngeal chemosensitivity: a possible mechanism for sudden infant death.
    Downing SE; Lee JC
    Pediatrics; 1975 May; 55(5):640-9. PubMed ID: 236536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prenatal nicotine exposure recruits an excitatory pathway to brainstem parasympathetic cardioinhibitory neurons during hypoxia/hypercapnia in the rat: implications for sudden infant death syndrome.
    Huang ZG; Wang X; Dergacheva O; Mendelowitz D
    Pediatr Res; 2005 Sep; 58(3):562-7. PubMed ID: 16148074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interleukin-1beta depresses hypoxic gasping and autoresuscitation in neonatal DBA/1lacJ mice.
    Hofstetter AO; Herlenius E
    Respir Physiol Neurobiol; 2005 Apr; 146(2-3):135-46. PubMed ID: 15766902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Take a deep breath and wake up: The protean role of serotonin preventing sudden death in infancy.
    Cummings KJ; Leiter JC
    Exp Neurol; 2020 Apr; 326():113165. PubMed ID: 31887304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory effects of hyperthermia on mechanisms involved in autoresuscitation from hypoxic apnea in mice: a model for thermal stress causing SIDS.
    Kahraman L; Thach BT
    J Appl Physiol (1985); 2004 Aug; 97(2):669-74. PubMed ID: 15247199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and clinical aspects of respiration control in infants with relation to the sudden infant death syndrome.
    Haidmayer R; Kurz R; Kenner T; Wurm H; Pfeiffer KP
    Klin Wochenschr; 1982 Jan; 60(1):9-18. PubMed ID: 6804687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of ventilation in subsequent siblings of victims of sudden infant death syndrome.
    Brady JP; McCann EM
    J Pediatr; 1985 Feb; 106(2):212-7. PubMed ID: 3918156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholinergic agents in the laryngeal chemoreflex model of sudden infant death syndrome.
    Rimell F; Goding GS; Johnson K
    Laryngoscope; 1993 Jun; 103(6):623-30. PubMed ID: 8502096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changing conclusions on secondhand smoke in a sudden infant death syndrome review funded by the tobacco industry.
    Tong EK; England L; Glantz SA
    Pediatrics; 2005 Mar; 115(3):e356-66. PubMed ID: 15741361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postnatal nicotine and/or intermittent hypercapnic hypoxia effects on apoptotic markers in the developing piglet brainstem medulla.
    Machaalani R; Waters KA
    Neuroscience; 2006 Sep; 142(1):107-17. PubMed ID: 16905268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sudden infant death syndrome (crib death).
    Guntheroth WG
    Am Heart J; 1977 Jun; 93(6):784-93. PubMed ID: 16476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.