These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 10743155)

  • 1. [Topographic mapping of slow cortical response in guinea pigs].
    Zhang Y; Jiang S; Gu R
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1997 Jun; 32(3):157-9. PubMed ID: 10743155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study of topographic mapping of the auditory middle latency response in the guinea pigs].
    Zhang Y; Jiang S; Gu R
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1994; 29(2):67-70. PubMed ID: 7803091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal observation of guinea pig auditory cortex with optical recording.
    Fukunishi K; Murai N; Uno H
    Jpn J Physiol; 1993; 43 Suppl 1():S61-6. PubMed ID: 8271517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of gap-marker spectrum on gap-evoked auditory response from the inferior colliculus and auditory cortex of guinea pigs.
    Wang J; Fenga Y; Yin S
    Int J Audiol; 2006 Sep; 45(9):521-7. PubMed ID: 17005495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses to species-specific vocalizations in the auditory cortex of awake and anesthetized guinea pigs.
    Syka J; Suta D; Popelár J
    Hear Res; 2005 Aug; 206(1-2):177-84. PubMed ID: 16081007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical responses to amplitude modulation in guinea pigs and the effects of general anesthesia by pentobarbital.
    Feng Y; Yin S; Wang J
    Hear Res; 2009 Jan; 247(1):40-6. PubMed ID: 18992800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal envelope processing in the human auditory cortex: response and interconnections of auditory cortical areas.
    Gourévitch B; Le Bouquin Jeannès R; Faucon G; Liégeois-Chauvel C
    Hear Res; 2008 Mar; 237(1-2):1-18. PubMed ID: 18255243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory-evoked potentials to frequency increase and decrease of high- and low-frequency tones.
    Pratt H; Starr A; Michalewski HJ; Dimitrijevic A; Bleich N; Mittelman N
    Clin Neurophysiol; 2009 Feb; 120(2):360-73. PubMed ID: 19070543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Topographic mapping of the auditory evoked potentials. I. Auditory cortex response and middle latency response].
    Gu R
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1992; 27(2):76-80, 125. PubMed ID: 1419182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intensity changes in a continuous tone: auditory cortical potentials comparison with frequency changes.
    Dimitrijevic A; Lolli B; Michalewski HJ; Pratt H; Zeng FG; Starr A
    Clin Neurophysiol; 2009 Feb; 120(2):374-83. PubMed ID: 19112047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Objectively evaluating auditory temporal resolution by iso-modulation depth temporal modulation transfer function in inferior colliculus and auditory cortex of guinea pigs].
    Feng YM; Yin SK; Wang J
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2007 Oct; 42(10):765-9. PubMed ID: 18229589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separate time behaviors of the temporal and frontal mismatch negativity sources.
    Rinne T; Alho K; Ilmoniemi RJ; Virtanen J; Näätänen R
    Neuroimage; 2000 Jul; 12(1):14-9. PubMed ID: 10875898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuromagnetic responses to binaural beat in human cerebral cortex.
    Karino S; Yumoto M; Itoh K; Uno A; Yamakawa K; Sekimoto S; Kaga K
    J Neurophysiol; 2006 Oct; 96(4):1927-38. PubMed ID: 16790592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping the 40-Hz auditory steady-state response using current density reconstructions.
    Reyes SA; Lockwood AH; Salvi RJ; Coad ML; Wack DS; Burkard RF
    Hear Res; 2005 Jun; 204(1-2):1-15. PubMed ID: 15925187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe.
    Krumbholz K; Schönwiesner M; von Cramon DY; Rübsamen R; Shah NJ; Zilles K; Fink GR
    Cereb Cortex; 2005 Mar; 15(3):317-24. PubMed ID: 15297367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corticofugal modulation on both ON and OFF responses in the nonlemniscal auditory thalamus of the guinea pig.
    He J
    J Neurophysiol; 2003 Jan; 89(1):367-81. PubMed ID: 12522186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of vibrotactile input to human auditory cortex.
    Caetano G; Jousmäki V
    Neuroimage; 2006 Jan; 29(1):15-28. PubMed ID: 16168673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial representation of neural responses to natural and altered conspecific vocalizations in cat auditory cortex.
    Gourévitch B; Eggermont JJ
    J Neurophysiol; 2007 Jan; 97(1):144-58. PubMed ID: 17021022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory cortical responses evoked by pure tones in healthy and sensorineural hearing loss subjects: functional MRI and magnetoencephalography.
    Zhang YT; Geng ZJ; Zhang Q; Li W; Zhang J
    Chin Med J (Engl); 2006 Sep; 119(18):1548-54. PubMed ID: 16996009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tone frequency maps and receptive fields in the developing chinchilla auditory cortex.
    Pienkowski M; Harrison RV
    J Neurophysiol; 2005 Jan; 93(1):454-66. PubMed ID: 15342716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.