These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 10743779)

  • 1. Detection of characteristic waves of sleep EEG by neural network analysis.
    Shimada T; Shiina T; Saito Y
    IEEE Trans Biomed Eng; 2000 Mar; 47(3):369-79. PubMed ID: 10743779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of EEG signals using neural network and logistic regression.
    Subasi A; Erçelebi E
    Comput Methods Programs Biomed; 2005 May; 78(2):87-99. PubMed ID: 15848265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Computer analysis of electroencephalogram].
    Inoue K; Kumamaru K; Matsuoka S
    Nihon Rinsho; 1998 Feb; 56(2):504-9. PubMed ID: 9503859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Automatic determination system of human sleep stages on an experimental basis].
    Matsuoka S; Ishikawak T; Inoue K; Hatashi A
    J UOEH; 1986 Mar; 8 Suppl():169-71. PubMed ID: 3726298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing.
    Subasi A; Alkan A; Koklukaya E; Kiymik MK
    Neural Netw; 2005 Sep; 18(7):985-97. PubMed ID: 15921885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Auto sleep staging and sleep quality estimation based on BP neural network].
    Liu J; Zheng C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1124-7. PubMed ID: 16422081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic recognition of alertness level by using wavelet transform and artificial neural network.
    Kiymik MK; Akin M; Subasi A
    J Neurosci Methods; 2004 Oct; 139(2):231-40. PubMed ID: 15488236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The functional connectivity of different EEG bands moves towards small-world network organization during sleep.
    Ferri R; Rundo F; Bruni O; Terzano MG; Stam CJ
    Clin Neurophysiol; 2008 Sep; 119(9):2026-36. PubMed ID: 18571469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG-based lapse detection with high temporal resolution.
    Davidson PR; Jones RD; Peiris MT
    IEEE Trans Biomed Eng; 2007 May; 54(5):832-9. PubMed ID: 17518279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic detection of epileptiform events in EEG by a three-stage procedure based on artificial neural networks.
    Acir N; Oztura I; Kuntalp M; Baklan B; Güzeliş C
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):30-40. PubMed ID: 15651562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated neonatal seizure detection: a multistage classification system through feature selection based on relevance and redundancy analysis.
    Aarabi A; Wallois F; Grebe R
    Clin Neurophysiol; 2006 Feb; 117(2):328-40. PubMed ID: 16376606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting movement-related EEG change by wavelet decomposition-based neural networks trained with single thumb movement.
    Chen CW; Lin CC; Ju MS
    Clin Neurophysiol; 2007 Apr; 118(4):802-14. PubMed ID: 17317306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interdependency between heart rate variability and sleep EEG: linear/non-linear?
    Dumont M; Jurysta F; Lanquart JP; Migeotte PF; van de Borne P; Linkowski P
    Clin Neurophysiol; 2004 Sep; 115(9):2031-40. PubMed ID: 15294205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multistage, multimethod approach for automatic detection and classification of epileptiform EEG.
    Liu HS; Zhang T; Yang FS
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1557-66. PubMed ID: 12549737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification.
    Garrett D; Peterson DA; Anderson CW; Thaut MH
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):141-4. PubMed ID: 12899257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reliable probabilistic sleep stager based on a single EEG signal.
    Flexer A; Gruber G; Dorffner G
    Artif Intell Med; 2005 Mar; 33(3):199-207. PubMed ID: 15811785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the contribution of lamina 5 neuronal and network dynamics to low frequency EEG phenomena.
    Karameh FN; Dahleh MA; Brown EN; Massaquoi SG
    Biol Cybern; 2006 Oct; 95(4):289-310. PubMed ID: 16897093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep spindle detection using artificial neural networks trained with filtered time-domain EEG: a feasibility study.
    Ventouras EM; Monoyiou EA; Ktonas PY; Paparrigopoulos T; Dikeos DG; Uzunoglu NK; Soldatos CR
    Comput Methods Programs Biomed; 2005 Jun; 78(3):191-207. PubMed ID: 15899305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of pseudosinusoidal epileptic seizure segments in the neonatal EEG by cascading a rule-based algorithm with a neural network.
    Karayiannis NB; Mukherjee A; Glover JR; Ktonas PY; Frost JD; Hrachovy RA; Mizrahi EM
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):633-41. PubMed ID: 16602569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic seizure detection in EEG using logistic regression and artificial neural network.
    Alkan A; Koklukaya E; Subasi A
    J Neurosci Methods; 2005 Oct; 148(2):167-76. PubMed ID: 16023730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.