These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 10744060)
1. Chronic prenatal exposure to carbon monoxide results in a reduction in tyrosine hydroxylase-immunoreactivity and an increase in choline acetyltransferase-immunoreactivity in the fetal medulla: implications for Sudden Infant Death Syndrome. Tolcos M; McGregor H; Walker D; Rees S J Neuropathol Exp Neurol; 2000 Mar; 59(3):218-28. PubMed ID: 10744060 [TBL] [Abstract][Full Text] [Related]
2. Exposure to prenatal carbon monoxide and postnatal hyperthermia: short and long-term effects on neurochemicals and neuroglia in the developing brain. Tolcos M; Mallard C; McGregor H; Walker D; Rees S Exp Neurol; 2000 Apr; 162(2):235-46. PubMed ID: 10739630 [TBL] [Abstract][Full Text] [Related]
3. Reduction in choline acetyltransferase immunoreactivity but not muscarinic-m2 receptor immunoreactivity in the brainstem of SIDS infants. Mallard C; Tolcos M; Leditschke J; Campbell P; Rees S J Neuropathol Exp Neurol; 1999 Mar; 58(3):255-64. PubMed ID: 10197817 [TBL] [Abstract][Full Text] [Related]
4. Chronic placental insufficiency in the fetal guinea pig affects neurochemical and neuroglial development but not neuronal numbers in the brainstem: a new method for combined stereology and immunohistochemistry. Tolcos M; Rees S J Comp Neurol; 1997 Mar; 379(1):99-112. PubMed ID: 9057115 [TBL] [Abstract][Full Text] [Related]
5. Co-localization of choline acetyltransferase and tyrosine hydroxylase within neurons of the dorsal motor nucleus of the vagus. Armstrong DM; Manley L; Haycock JW; Hersh LB J Chem Neuroanat; 1990; 3(2):133-40. PubMed ID: 1971179 [TBL] [Abstract][Full Text] [Related]
6. Relationship of substance P and gliosis in medulla oblongata in neonatal sudden infant death syndrome. Obonai T; Takashima S; Becker LE; Asanuma M; Mizuta R; Horie H; Tanaka J Pediatr Neurol; 1996 Oct; 15(3):189-92. PubMed ID: 8916154 [TBL] [Abstract][Full Text] [Related]
8. The distribution of tyrosine hydroxylase, dopamine-beta-hydroxylase, and phenylethanolamine-N-methyltransferase immunoreactive neurons in the feline medulla oblongata. Reiner PB; Vincent SR J Comp Neurol; 1986 Jun; 248(4):518-31. PubMed ID: 2873156 [TBL] [Abstract][Full Text] [Related]
9. Nuclei of origin of monoaminergic, peptidergic, and cholinergic afferents to the cat trigeminal motor nucleus: a double-labeling study with cholera-toxin as a retrograde tracer. Fort P; Luppi PH; Sakai K; Salvert D; Jouvet M J Comp Neurol; 1990 Nov; 301(2):262-75. PubMed ID: 1702107 [TBL] [Abstract][Full Text] [Related]
10. Hypoglossal premotor neurons of the intermediate medullary reticular region express cholinergic markers. Volgin DV; Rukhadze I; Kubin L J Appl Physiol (1985); 2008 Nov; 105(5):1576-84. PubMed ID: 18772326 [TBL] [Abstract][Full Text] [Related]
11. Medullary tyrosine hydroxylase catecholaminergic neuronal populations in sudden unexpected death in epilepsy. Patodia S; Tan I; Ellis M; Somani A; Scheffer IE; Sisodiya SM; Thom M Brain Pathol; 2021 Jan; 31(1):133-143. PubMed ID: 32852867 [TBL] [Abstract][Full Text] [Related]
12. Effect of sex on chronic stress induced alterations in hindbrain catecholaminergic system and autonomic dysfunction resulting in gastrointestinal dysmotility. Zaman A; Özçelik H; Yücel E; Su Akkan S; Onsinejad T; Mert Yüksel S; Bülbül M Brain Res; 2024 Nov; 1842():149112. PubMed ID: 38969083 [TBL] [Abstract][Full Text] [Related]
13. Development of catecholaminergic neurons in the human medulla oblongata. Lorke DE; Kwong WH; Chan WY; Yew DT Life Sci; 2003 Jul; 73(10):1315-31. PubMed ID: 12850246 [TBL] [Abstract][Full Text] [Related]
14. Distribution of acetylcholine and catecholamine neurons in the cat brainstem: a choline acetyltransferase and tyrosine hydroxylase immunohistochemical study. Jones BE; Beaudet A J Comp Neurol; 1987 Jul; 261(1):15-32. PubMed ID: 2887593 [TBL] [Abstract][Full Text] [Related]
15. Cell type specific sequestration of choline acetyltransferase and tyrosine hydroxylase within Lewy bodies. Dugger BN; Dickson DW Acta Neuropathol; 2010 Nov; 120(5):633-9. PubMed ID: 20721565 [TBL] [Abstract][Full Text] [Related]
16. Immunocytochemical localization of catecholamine synthesizing enzymes and neuropeptides in area postrema and medial nucleus tractus solitarius of rat brain. Armstrong DM; Pickel VM; Joh TH; Reis DJ; Miller RJ J Comp Neurol; 1981 Mar; 196(3):505-17. PubMed ID: 6163796 [TBL] [Abstract][Full Text] [Related]
17. Neurochemical architecture of the human striatum. Holt DJ; Graybiel AM; Saper CB J Comp Neurol; 1997 Jul; 384(1):1-25. PubMed ID: 9214537 [TBL] [Abstract][Full Text] [Related]
18. Developmental abnormalities of medullary "respiratory centers" in sudden infant death syndrome. Takashima S; Becker LE Exp Neurol; 1985 Dec; 90(3):580-7. PubMed ID: 4065274 [TBL] [Abstract][Full Text] [Related]
19. [Cholinergic neurons in the nuclear formations of the human fetal medulla oblongata]. Motavkin PA; Okhotin VE Arkh Anat Gistol Embriol; 1983 Jan; 84(1):24-31. PubMed ID: 6838384 [TBL] [Abstract][Full Text] [Related]
20. Alterations in TH- and ChAT-immunoreactive neurons in the DMV and gastric dysmotility in an LPS-induced PD rat model. Zheng LF; Zhang Y; Chen CL; Song J; Fan RF; Cai QQ; Wang ZY; Zhu JX Auton Neurosci; 2013 Oct; 177(2):194-8. PubMed ID: 23701914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]