BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 10744858)

  • 1. Phospho-dependent association of neurofilament proteins with kinesin in situ.
    Yabe JT; Jung C; Chan WK; Shea TB
    Cell Motil Cytoskeleton; 2000 Apr; 45(4):249-62. PubMed ID: 10744858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurofilament cross-bridging competes with kinesin-dependent association of neurofilaments with microtubules.
    Kushkuley J; Chan WK; Lee S; Eyer J; Leterrier JF; Letournel F; Shea TB
    J Cell Sci; 2009 Oct; 122(Pt 19):3579-86. PubMed ID: 19737816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The high and middle molecular weight neurofilament subunits regulate the association of neurofilaments with kinesin: inhibition by phosphorylation of the high molecular weight subunit.
    Jung C; Lee S; Ortiz D; Zhu Q; Julien JP; Shea TB
    Brain Res Mol Brain Res; 2005 Nov; 141(2):151-5. PubMed ID: 16246456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurofilament subunits undergo more rapid translocation within retinas than in optic axons.
    Jung C; Shea TB
    Brain Res Mol Brain Res; 2004 Mar; 122(2):188-92. PubMed ID: 15010211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynein mediates retrograde neurofilament transport within axons and anterograde delivery of NFs from perikarya into axons: regulation by multiple phosphorylation events.
    Motil J; Chan WK; Dubey M; Chaudhury P; Pimenta A; Chylinski TM; Ortiz DT; Shea TB
    Cell Motil Cytoskeleton; 2006 May; 63(5):266-86. PubMed ID: 16570247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential roles of kinesin and dynein in translocation of neurofilaments into axonal neurites.
    Lee S; Sunil N; Tejada JM; Shea TB
    J Cell Sci; 2011 Apr; 124(Pt 7):1022-31. PubMed ID: 21363889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extensive phosphorylation and axonal transport of triton-soluble neurofilament subunits.
    Shea TB; Jung C; Yabe J; Ma D; Fischer I
    Subcell Biochem; 1998; 31():527-61. PubMed ID: 9932505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of neurofilament axonal transport by phosphorylation in optic axons in situ.
    Jung C; Shea TB
    Cell Motil Cytoskeleton; 1999; 42(3):230-40. PubMed ID: 10098936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interference with kinesin-based anterograde neurofilament axonal transport increases neurofilament-neurofilament bundling.
    Sunil N; Lee S; Shea TB
    Cytoskeleton (Hoboken); 2012 Jun; 69(6):371-9. PubMed ID: 22434685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypophosphorylated neurofilament subunits undergo axonal transport more rapidly than more extensively phosphorylated subunits in situ.
    Jung C; Yabe JT; Lee S; Shea TB
    Cell Motil Cytoskeleton; 2000 Oct; 47(2):120-9. PubMed ID: 11013392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtubule motors, phosphorylation and axonal transport of neurofilaments.
    Shea TB
    J Neurocytol; 2000; 29(11-12):873-87. PubMed ID: 11466476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early posttranslational modifications of the three neurofilament subunits in mouse retinal ganglion cells: neuronal sites and time course in relation to subunit polymerization and axonal transport.
    Nixon RA; Lewis SE; Dahl D; Marotta CA; Drager UC
    Brain Res Mol Brain Res; 1989 Mar; 5(2):93-108. PubMed ID: 2469928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurofilament subunits can undergo axonal transport without incorporation into Triton-insoluble structures.
    Jung C; Yabe J; Wang FS; Shea TB
    Cell Motil Cytoskeleton; 1998; 40(1):44-58. PubMed ID: 9605971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments.
    Lewis SE; Nixon RA
    J Cell Biol; 1988 Dec; 107(6 Pt 2):2689-701. PubMed ID: 3144556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tau interferes with axonal neurite stabilization and cytoskeletal composition independently of its ability to associate with microtubules.
    Boumil EF; Vohnoutka RB; Lee S; Shea TB
    Biol Open; 2020 Sep; 9(9):. PubMed ID: 32978225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triton-soluble phosphovariants of the heavy neurofilament subunit in developing and mature mouse central nervous system.
    Shea TB; Dahl DC; Nixon RA; Fischer I
    J Neurosci Res; 1997 Jun; 48(6):515-23. PubMed ID: 9210521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tau inhibits anterograde axonal transport and perturbs stability in growing axonal neurites in part by displacing kinesin cargo: neurofilaments attenuate tau-mediated neurite instability.
    Dubey M; Chaudhury P; Kabiru H; Shea TB
    Cell Motil Cytoskeleton; 2008 Feb; 65(2):89-99. PubMed ID: 18000878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The predominant form in which neurofilament subunits undergo axonal transport varies during axonal initiation, elongation, and maturation.
    Yabe JT; Chan WK; Chylinski TM; Lee S; Pimenta AF; Shea TB
    Cell Motil Cytoskeleton; 2001 Jan; 48(1):61-83. PubMed ID: 11124711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth cones contain a dynamic population of neurofilament subunits.
    Chan WK; Yabe JT; Pimenta AF; Ortiz D; Shea TB
    Cell Motil Cytoskeleton; 2003 Mar; 54(3):195-207. PubMed ID: 12589678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-terminal phosphorylation of the high molecular weight neurofilament subunit correlates with decreased neurofilament axonal transport velocity.
    Jung C; Yabe JT; Shea TB
    Brain Res; 2000 Feb; 856(1-2):12-9. PubMed ID: 10677606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.