These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 10744992)

  • 61. Gene silencing in Escherichia coli using antisense RNAs expressed from doxycycline-inducible vectors.
    Nakashima N; Tamura T
    Lett Appl Microbiol; 2013 Jun; 56(6):436-42. PubMed ID: 23480057
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Polyadenylation can regulate ColE1 type plasmid copy number independently of any effect on RNAI decay by decreasing the interaction of antisense RNAI with its RNAII target.
    Xu FF; Gaggero C; Cohen SN
    Plasmid; 2002 Jul; 48(1):49-58. PubMed ID: 12206755
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq.
    Kawamoto H; Koide Y; Morita T; Aiba H
    Mol Microbiol; 2006 Aug; 61(4):1013-22. PubMed ID: 16859494
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Comparative analysis of the replicon regions of eleven ColE2-related plasmids.
    Hiraga S; Sugiyama T; Itoh T
    J Bacteriol; 1994 Dec; 176(23):7233-43. PubMed ID: 7525540
    [TBL] [Abstract][Full Text] [Related]  

  • 65. An in silico model for identification of small RNAs in whole bacterial genomes: characterization of antisense RNAs in pathogenic Escherichia coli and Streptococcus agalactiae strains.
    Pichon C; du Merle L; Caliot ME; Trieu-Cuot P; Le Bouguénec C
    Nucleic Acids Res; 2012 Apr; 40(7):2846-61. PubMed ID: 22139924
    [TBL] [Abstract][Full Text] [Related]  

  • 66. HIV-1 TAR as anchoring site for optimized catalytic RNAs.
    Puerta-Fernandez E; Barroso-del Jesus A; Romero-López C; Berzal-Herranz A
    Biol Chem; 2003 Mar; 384(3):343-50. PubMed ID: 12715885
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Small RNA genes expressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains.
    Pichon C; Felden B
    Proc Natl Acad Sci U S A; 2005 Oct; 102(40):14249-54. PubMed ID: 16183745
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A Modular Genetic System for High-Throughput Profiling and Engineering of Multi-Target Small RNAs.
    Stimple SD; Lahiry A; Taris JE; Wood DW; Lease RA
    Methods Mol Biol; 2018; 1737():373-391. PubMed ID: 29484604
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Copy number control of IncIalpha plasmid ColIb-P9 by competition between pseudoknot formation and antisense RNA binding at a specific RNA site.
    Asano K; Mizobuchi K
    EMBO J; 1998 Sep; 17(17):5201-13. PubMed ID: 9724656
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Multilevel Regulation of Bacterial Gene Expression with the Combined STAR and Antisense RNA System.
    Lee YJ; Kim SJ; Moon TS
    ACS Synth Biol; 2018 Mar; 7(3):853-865. PubMed ID: 29429328
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Loop swapping in an antisense RNA/target RNA pair changes directionality of helix progression.
    Slagter-Jäger JG; Wagner EG
    J Biol Chem; 2003 Sep; 278(37):35558-63. PubMed ID: 12819201
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An evolutionarily conserved RNA stem-loop functions as a sensor that directs feedback regulation of RNase E gene expression.
    Diwa A; Bricker AL; Jain C; Belasco JG
    Genes Dev; 2000 May; 14(10):1249-60. PubMed ID: 10817759
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Theoretical design of antisense genes with statistically increased efficacy.
    Lehmann MJ; Patzel V; Sczakiel G
    Nucleic Acids Res; 2000 Jul; 28(13):2597-604. PubMed ID: 10871411
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mechanism of post-segregational killing: secondary structure analysis of the entire Hok mRNA from plasmid R1 suggests a fold-back structure that prevents translation and antisense RNA binding.
    Thisted T; Sørensen NS; Gerdes K
    J Mol Biol; 1995 Apr; 247(5):859-73. PubMed ID: 7536849
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Regulatory RNAs in cyanobacteria: developmental decisions, stress responses and a plethora of chromosomally encoded cis-antisense RNAs.
    Georg J; Hess WR
    Biol Chem; 2011 Apr; 392(4):291-7. PubMed ID: 21294678
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Probing the sequence and structure of in vitro synthesized antisense and target RNAs from the replication control system of plasmid pMV158.
    López-Aguilar C; del Solar G
    Plasmid; 2013 Jul; 70(1):94-103. PubMed ID: 23541653
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The excludon: a new concept in bacterial antisense RNA-mediated gene regulation.
    Sesto N; Wurtzel O; Archambaud C; Sorek R; Cossart P
    Nat Rev Microbiol; 2013 Feb; 11(2):75-82. PubMed ID: 23268228
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The base-pairing RNA spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in Escherichia coli.
    Beisel CL; Storz G
    Mol Cell; 2011 Feb; 41(3):286-97. PubMed ID: 21292161
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Ribonucleases, antisense RNAs and the control of bacterial plasmids.
    Saramago M; Bárria C; Arraiano CM; Domingues S
    Plasmid; 2015 Mar; 78():26-36. PubMed ID: 25263573
    [TBL] [Abstract][Full Text] [Related]  

  • 80. An unusually long-lived antisense RNA in plasmid copy number control: in vivo RNAs encoded by the streptococcal plasmid pIP501.
    Brantl S; Wagner EG
    J Mol Biol; 1996 Jan; 255(2):275-88. PubMed ID: 8551520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.