These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 10746018)
1. A combinatorial approach to recognition of chirality: preparation of highly enantioselective aryl-dihydropyrimidine selectors for chiral HPLC. Lewandowski K; Murer P; Svec F; Fréchet JM J Comb Chem; 1999 Jan; 1(1):105-12. PubMed ID: 10746018 [TBL] [Abstract][Full Text] [Related]
2. Chiral recognition: design and preparation of chiral stationary phases using selectors derived from ugi multicomponent condensation reactions and a combinatorial approach. Brahmachary E; Ling FH; Svec F; Fréchet JM J Comb Chem; 2003; 5(4):441-50. PubMed ID: 12857112 [TBL] [Abstract][Full Text] [Related]
3. On-bead combinatorial approach to the design of chiral stationary phases for HPLC. Murer P; Lewandowski K; Svec F; Fréchet JM Anal Chem; 1999 Apr; 71(7):1278-84. PubMed ID: 10204033 [TBL] [Abstract][Full Text] [Related]
4. The design of chiral separation media using monodisperse functionalized macroporous beads: effects of polymer matrix, tether, and linkage chemistry. Lewandowski K; Murer P; Svec F; Fréchet JM Anal Chem; 1998 Apr; 70(8):1629-38. PubMed ID: 9569769 [TBL] [Abstract][Full Text] [Related]
5. Effect of multivalency on the performance of enantioselective separation media for chiral HPLC prepared by linking multiple selectors to a porous polymer support via aliphatic dendrons. Ling FH; Lu V; Svec F; Fréchet JM J Org Chem; 2002 Apr; 67(7):1993-2002. PubMed ID: 11925202 [TBL] [Abstract][Full Text] [Related]
6. Direct high-performance liquid chromatographic separation of peptide enantiomers: study on chiral recognition by systematic evaluation of the influence of structural features of the chiral selectors on enantioselectivity. Czerwenka C; Lämmerhofer M; Maier NM; Rissanen K; Lindner W Anal Chem; 2002 Nov; 74(21):5658-66. PubMed ID: 12433102 [TBL] [Abstract][Full Text] [Related]
7. Enantiomeric separation of racemic 4-aryl-1,4-dihydropyridines and 4-aryl-1,2,3,4-tetrahydropyrimidines on a chiral tetraproline stationary phase. Dai Z; Pittman CU; Li T Chirality; 2013 Apr; 25(4):238-42. PubMed ID: 23450752 [TBL] [Abstract][Full Text] [Related]
8. Preparation and evaluation of a novel N-benzyl-phenethylamino-β-cyclodextrin-bonded chiral stationary phase for HPLC. Li L; Cheng B; Zhou R; Cao Z; Zeng C; Li L Talanta; 2017 Nov; 174():179-191. PubMed ID: 28738566 [TBL] [Abstract][Full Text] [Related]
9. Polymer- versus silica-based separation media: elimination of nonspecific interactions in the chiral recognition process through functional polymer design. Liu Y; Svec F; Fréchet JM; Juneau KN Anal Chem; 1997 Jan; 69(1):61-5. PubMed ID: 8990979 [TBL] [Abstract][Full Text] [Related]
10. A practical method for the quantitative assessment of non-enantioselective versus enantioselective interactions encountered in liquid chromatography on brush-type chiral stationary phase. Levkin P; Maier NM; Lindner W; Schurig V J Chromatogr A; 2012 Dec; 1269():270-8. PubMed ID: 23127812 [TBL] [Abstract][Full Text] [Related]
11. Performance of brush-type HPLC chiral stationary phases with tertiary amide in the connecting tether. Forjan DM; Kontrec D; Vinković V Chirality; 2006 Nov; 18(10):857-69. PubMed ID: 16977611 [TBL] [Abstract][Full Text] [Related]
12. Complementary enantioselectivity profiles of chiral cinchonan carbamate selectors with distinct carbamate residues and their implementation in enantioselective two-dimensional high-performance liquid chromatography of amino acids. Woiwode U; Ferri M; Maier NM; Lindner W; Lämmerhofer M J Chromatogr A; 2018 Jul; 1558():29-36. PubMed ID: 29759645 [TBL] [Abstract][Full Text] [Related]
13. Role of the weak interactions in enantiorecognition of racemic dihydropyrimidinones by novel brush-type chiral stationary phases. Forjan DM; Gazić I; Vinković V Chirality; 2007 Jun; 19(6):446-52. PubMed ID: 17393470 [TBL] [Abstract][Full Text] [Related]
14. Preparation of highly selective stationary phases for high-performance liquid chromatographic separation of enantiomers by direct copolymerization of monomers with single or twin chiral ligands. Xu M; Brahmachary E; Janco M; Ling FH; Svec F; Fréchet JM J Chromatogr A; 2001 Aug; 928(1):25-40. PubMed ID: 11589469 [TBL] [Abstract][Full Text] [Related]
15. Comparative study on the enantiomer separation of 1,1'-binaphthyl-2,2'diyl hydrogenphosphate and 1,1'-bi-2-naphthol by liquid chromatography and capillary electrophoresis using single and combined chiral selector systems. Bielejewska A; Duszczyk K; Kwaterczak A; Sybilska D J Chromatogr A; 2002 Nov; 977(2):225-37. PubMed ID: 12456112 [TBL] [Abstract][Full Text] [Related]
16. Enantioselective Separation and Pharmacokinetics of a Chiral 1,4-Dihydropyrimidine Derivative in Rats: A Combined Chromatography and Docking Approach. Sri CD; Faizan S; Chandra MR; Kumar BRP; Gurupadayya BM Chirality; 2024 Oct; 36(10):e23723. PubMed ID: 39397351 [TBL] [Abstract][Full Text] [Related]
18. Enantiorecognition of triiodothyronine and thyroxine enantiomers using different chiral selectors by HPLC and micro-HPLC. Koidl J; Hödl H; Schmid MG; Neubauer B; Konrad M; Petschauer S; Gübitz G J Biochem Biophys Methods; 2008 Apr; 70(6):1254-60. PubMed ID: 17980436 [TBL] [Abstract][Full Text] [Related]
19. Substituent effects on the enantioselective retention of anti-HIV 5-aryl-delta 2-1,2,4-oxadiazolines on R,R-DACH-DNB chiral stationary phase. Altomare C; Cellamare S; Carotti A; Barreca ML; Chimirri A; Monforte AM; Gasparrini F; Villani C; Cirilli M; Mazza F Chirality; 1996; 8(8):556-66. PubMed ID: 9025255 [TBL] [Abstract][Full Text] [Related]
20. Liquid chromatographic separation of enantiomers of beta-amino acids using a chiral stationary phase. Griffith OW; Campbell EB; Pirkle WH; Tsipouras A; Hyun MH J Chromatogr; 1986 Jul; 362(3):345-52. PubMed ID: 3760049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]