BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 10746319)

  • 1. Dipicolinic acid (DPA) assay revisited and appraised for spore detection.
    Hindle AA; Hall EA
    Analyst; 1999 Nov; 124(11):1599-604. PubMed ID: 10746319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyapatite nanoparticle based fluorometric turn-on determination of dipicolinic acid, a biomarker of bacterial spores.
    Li Y; Li X; Wang D; Shen C; Yang M
    Mikrochim Acta; 2018 Aug; 185(9):435. PubMed ID: 30167800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-spore elemental analyses indicate that dipicolinic acid-deficient Bacillus subtilis spores fail to accumulate calcium.
    Hintze PE; Nicholson WL
    Arch Microbiol; 2010 Jun; 192(6):493-7. PubMed ID: 20396869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spore dipicolinic acid contents used for estimating the number of endospores in sediments.
    Fichtel J; Köster J; Rullkötter J; Sass H
    FEMS Microbiol Ecol; 2007 Sep; 61(3):522-32. PubMed ID: 17623026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A highly sensitive HPLC method for determination of nanomolar concentrations of dipicolinic acid, a characteristic constituent of bacterial endospores.
    Fichtel J; Köster J; Scholz-Böttcher B; Sass H; Rullkötter J
    J Microbiol Methods; 2007 Aug; 70(2):319-27. PubMed ID: 17573136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of heat resistance of bacterial spores from food product isolates by fluorescence monitoring of dipicolinic acid release.
    Kort R; O'Brien AC; van Stokkum IH; Oomes SJ; Crielaard W; Hellingwerf KJ; Brul S
    Appl Environ Microbiol; 2005 Jul; 71(7):3556-64. PubMed ID: 16000762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanocluster-europium(III) ratiometric fluorescence assay for dipicolinic acid.
    Li X; Luo J; Jiang X; Yang M; Rasooly A
    Mikrochim Acta; 2021 Jan; 188(1):26. PubMed ID: 33404771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terbium chloride influences Clostridium difficile spore germination.
    Shrestha R; Sorg JA
    Anaerobe; 2019 Aug; 58():80-88. PubMed ID: 30926439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow leakage of Ca-dipicolinic acid from individual bacillus spores during initiation of spore germination.
    Wang S; Setlow P; Li YQ
    J Bacteriol; 2015 Mar; 197(6):1095-103. PubMed ID: 25583976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores.
    Gao N; Zhang Y; Huang P; Xiang Z; Wu FY; Mao L
    Anal Chem; 2018 Jun; 90(11):7004-7011. PubMed ID: 29701058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteins and dipicolinic acid released during heat shock activation of Bacillus subtilis spores probed by optical spectroscopy.
    Alimova A; Katz A; Gottlieb P; Alfano RR
    Appl Opt; 2006 Jan; 45(3):445-50. PubMed ID: 16463727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Airborne bacterial spore counts by terbium-enhanced luminescence detection: pitfalls and real values.
    Li Q; Dasgupta PK; Temkins HK
    Environ Sci Technol; 2008 Apr; 42(8):2799-804. PubMed ID: 18497126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the germination kinetics of individual Bacillus subtilis spores treated with hydrogen peroxide or sodium hypochlorite.
    Setlow B; Yu J; Li YQ; Setlow P
    Lett Appl Microbiol; 2013 Oct; 57(4):259-65. PubMed ID: 23746146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of factors influencing the rate of germination of spores of Bacillus subtilis by very high pressure.
    Black EP; Wei J; Atluri S; Cortezzo DE; Koziol-Dube K; Hoover DG; Setlow P
    J Appl Microbiol; 2007 Jan; 102(1):65-76. PubMed ID: 17184321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Incorporation of Fluorophores in Zeolitic Imidazolate Framework-8 (ZIF-8) for Ratio-Dependent Detecting a Biomarker of Anthrax Spores.
    Li X; Luo J; Deng L; Ma F; Yang M
    Anal Chem; 2020 May; 92(10):7114-7122. PubMed ID: 32329601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent detection of dipicolinic acid as a biomarker in bacterial spores employing terbium ion-coordinated magnetite nanoparticles.
    Koo TM; Ko MJ; Park BC; Kim MS; Kim YK
    J Hazard Mater; 2021 Apr; 408():124870. PubMed ID: 33387720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of dipicolinic acid in the germination, stability, and viability of spores of Bacillus subtilis.
    Magge A; Granger AC; Wahome PG; Setlow B; Vepachedu VR; Loshon CA; Peng L; Chen D; Li YQ; Setlow P
    J Bacteriol; 2008 Jul; 190(14):4798-807. PubMed ID: 18469099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of SpoVA proteins in release of dipicolinic acid during germination of Bacillus subtilis spores triggered by dodecylamine or lysozyme.
    Vepachedu VR; Setlow P
    J Bacteriol; 2007 Mar; 189(5):1565-72. PubMed ID: 17158659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid onsite detection of bacterial spores of biothreat importance by paper-based colorimetric method using erbium-pyrocatechol violet complex.
    Shivakiran MS; Venkataramana M; Lakshmana Rao PV
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):893-901. PubMed ID: 26603759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional multiwavelength fluorescence spectra of dipicolinic acid and calcium dipicolinate.
    Sarasanandarajah S; Kunnil J; Bronk BV; Reinisch L
    Appl Opt; 2005 Mar; 44(7):1182-7. PubMed ID: 15765697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.