These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 10746573)
1. The effect of 100% CO2 on the growth of nonproteolytic Clostridium botulinum at chill temperatures. Gibson AM; Ellis-Brownlee RC; Cahill ME; Szabo EA; Fletcher GC; Bremer PJ Int J Food Microbiol; 2000 Mar; 54(1-2):39-48. PubMed ID: 10746573 [TBL] [Abstract][Full Text] [Related]
2. Effect of pH and CO2 on growth and toxin production by Clostridium botulinum in English-style crumpets packaged under modified atmospheres. Daifas DP; Smith JP; Blanchfield B; Austin JW J Food Prot; 1999 Oct; 62(10):1157-61. PubMed ID: 10528719 [TBL] [Abstract][Full Text] [Related]
3. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature. Graham AF; Mason DR; Peck MW Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606 [TBL] [Abstract][Full Text] [Related]
4. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature. Graham AF; Mason DR; Maxwell FJ; Peck MW Lett Appl Microbiol; 1997 Feb; 24(2):95-100. PubMed ID: 9081311 [TBL] [Abstract][Full Text] [Related]
6. The combined affects of modified atmosphere, temperature, nisin and ALTA 2341 on the growth of Listeria monocytogenes. Szabo EA; Cahill ME Int J Food Microbiol; 1998 Aug; 43(1-2):21-31. PubMed ID: 9761335 [TBL] [Abstract][Full Text] [Related]
7. Predictive model of the effect of temperature, pH and sodium chloride on growth from spores of non-proteolytic Clostridium botulinum. Graham AF; Mason DR; Peck MW Int J Food Microbiol; 1996 Aug; 31(1-3):69-85. PubMed ID: 8880298 [TBL] [Abstract][Full Text] [Related]
8. Time-to-turbidity model for non-protective type B Clostridium botulinum. Whiting RC; Oriente JC Int J Food Microbiol; 1997 Apr; 36(1):49-60. PubMed ID: 9168314 [TBL] [Abstract][Full Text] [Related]
9. Combining heat treatment and subsequent incubation temperature to prevent growth from spores of non-proteolytic Clostridium botulinum. Stringer SC; Fairbairn DA; Peck MW J Appl Microbiol; 1997 Jan; 82(1):128-36. PubMed ID: 9113882 [TBL] [Abstract][Full Text] [Related]
10. Effect of heat treatment on survival of, and growth from, spores of nonproteolytic Clostridium botulinum at refrigeration temperatures. Peck MW; Lund BM; Fairbairn DA; Kaspersson AS; Undeland PC Appl Environ Microbiol; 1995 May; 61(5):1780-5. PubMed ID: 7646016 [TBL] [Abstract][Full Text] [Related]
11. Effect of media, additives, and incubation conditions on the recovery of high pressure and heat-injured Clostridium botulinum spores. Reddy NR; Tetzloff RC; Skinner GE Food Microbiol; 2010 Aug; 27(5):613-7. PubMed ID: 20510779 [TBL] [Abstract][Full Text] [Related]
12. The combined effect of sub-optimal temperature and sub-optimal pH on growth and toxin formation from spores of Clostridium botulinum. Graham AF; Lund BM J Appl Bacteriol; 1987 Nov; 63(5):387-93. PubMed ID: 3326865 [TBL] [Abstract][Full Text] [Related]
13. Effect of High Pressures in Combination with Temperature on the Inactivation of Spores of Nonproteolytic Clostridium botulinum Types B and F. Skinner GE; Morrissey TR; Patazca E; Loeza V; Halik LA; Schill KM; Reddy NR J Food Prot; 2018 Feb; 81(2):261-271. PubMed ID: 29360398 [TBL] [Abstract][Full Text] [Related]
14. Quantitative interaction effects of carbon dioxide, sodium chloride, and sodium nitrite on neurotoxin gene expression in nonproteolytic Clostridium botulinum type B. Lövenklev M; Artin I; Hagberg O; Borch E; Holst E; Rådström P Appl Environ Microbiol; 2004 May; 70(5):2928-34. PubMed ID: 15128553 [TBL] [Abstract][Full Text] [Related]
15. Growth of and toxin production by nonproteolytic Clostridium botulinum in cooked puréed vegetables at refrigeration temperatures. Carlin F; Peck MW Appl Environ Microbiol; 1996 Aug; 62(8):3069-72. PubMed ID: 8702303 [TBL] [Abstract][Full Text] [Related]
16. A study on the toxigenesis by Clostridium botulinum in nitrate and nitrite-reduced dry fermented sausages. Hospital XF; Hierro E; Stringer S; Fernández M Int J Food Microbiol; 2016 Feb; 218():66-70. PubMed ID: 26619314 [TBL] [Abstract][Full Text] [Related]
17. Growth and toxin production of Clostridium botulinum types E, nonproteolytic B, and F in nonirradiated and irradiated fisheries products in the temperature range of 36 degrees to 72 degrees F. TID-24881. Eklund MW; Poysky FT; Wieler DI TID Rep; 1966 Jan; ():1-86. PubMed ID: 4905224 [No Abstract] [Full Text] [Related]
18. Effect of reducing agents on oxidation-reduction potential and the outgrowth of Clostridium botulinum type E spores. Smith MV; Pierson MD Appl Environ Microbiol; 1979 May; 37(5):978-84. PubMed ID: 384903 [TBL] [Abstract][Full Text] [Related]
19. Sodium nitrite and potassium nitrate in control of nonproteolytic Clostridium botulinum outgrowth and toxigenesis in vacuum-packed cold-smoked rainbow trout. Hyytiä E; Eerola S; Hielm S; Korkeala H Int J Food Microbiol; 1997 Jun; 37(1):63-72. PubMed ID: 9237123 [TBL] [Abstract][Full Text] [Related]
20. [Growth of Clostridium botulinum in media with garlic (Allium sativum)]. Giménez MA; Solanes RE; Giménez DF Rev Argent Microbiol; 1988; 20(1):17-24. PubMed ID: 3051126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]