These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 10746574)
41. [Not Available]. Malek F Can J Microbiol; 2019 Jun; 65(6):405-420. PubMed ID: 30935210 [TBL] [Abstract][Full Text] [Related]
42. Surface characteristics of Bacillus cereus and its adhesion to stainless steel. Peng JS; Tsai WC; Chou CC Int J Food Microbiol; 2001 Apr; 65(1-2):105-11. PubMed ID: 11322692 [TBL] [Abstract][Full Text] [Related]
43. Microbiological quality of raw milk attributable to prolonged refrigeration conditions. Vithanage NR; Dissanayake M; Bolge G; Palombo EA; Yeager TR; Datta N J Dairy Res; 2017 Feb; 84(1):92-101. PubMed ID: 28252354 [TBL] [Abstract][Full Text] [Related]
44. Genetic diversity and spoilage potentials among Pseudomonas spp. isolated from fluid milk products and dairy processing plants. Dogan B; Boor KJ Appl Environ Microbiol; 2003 Jan; 69(1):130-8. PubMed ID: 12513987 [TBL] [Abstract][Full Text] [Related]
45. Biofilm-producing ability of Staphylococcus aureus isolates from Brazilian dairy farms. Lee SH; Mangolin BL; Gonçalves JL; Neeff DV; Silva MP; Cruz AG; Oliveira CA J Dairy Sci; 2014 Mar; 97(3):1812-6. PubMed ID: 24440248 [TBL] [Abstract][Full Text] [Related]
46. A standard bacterial isolate set for research on contemporary dairy spoilage. Trmčić A; Martin NH; Boor KJ; Wiedmann M J Dairy Sci; 2015 Aug; 98(8):5806-17. PubMed ID: 26026752 [TBL] [Abstract][Full Text] [Related]
47. Bacterial diversity on stainless steel surfaces of egg processing companies and potential of selected isolates to spoil liquid whole egg products. Techer C; Jan S; Gonnet F; Grosset N; Gautier M; Baron F J Appl Microbiol; 2019 Nov; 127(5):1501-1510. PubMed ID: 31357234 [TBL] [Abstract][Full Text] [Related]
48. Impact of acid adaptation on attachment of Listeria monocytogenes to stainless steel during long-term incubation under low or moderate temperature conditions and on subsequent recalcitrance of attached cells to lethal acid treatments. Giaouris E; Chorianopoulos N; Nychas GJ Int J Food Microbiol; 2014 Feb; 171():1-7. PubMed ID: 24296256 [TBL] [Abstract][Full Text] [Related]
49. Efficient removal of spores from skim milk using cold microfiltration: Spore size and surface property considerations. Griep ER; Cheng Y; Moraru CI J Dairy Sci; 2018 Nov; 101(11):9703-9713. PubMed ID: 30146287 [TBL] [Abstract][Full Text] [Related]
50. Factors contributing to the seasonal variation of Bacillus spp. in pasteurized dairy products. Phillips JD; Griffiths MW J Appl Bacteriol; 1986 Oct; 61(4):275-85. PubMed ID: 3781939 [TBL] [Abstract][Full Text] [Related]
51. Characterization of Bacillus cereus isolates from local dairy farms in China. Cui Y; Liu X; Dietrich R; Märtlbauer E; Cao J; Ding S; Zhu K FEMS Microbiol Lett; 2016 Jun; 363(12):. PubMed ID: 27190168 [TBL] [Abstract][Full Text] [Related]
52. Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration. Moraes JO; Cruz EA; Souza EGF; Oliveira TCM; Alvarenga VO; Peña WEL; Sant'Ana AS; Magnani M Int J Food Microbiol; 2018 Sep; 281():90-100. PubMed ID: 29843904 [TBL] [Abstract][Full Text] [Related]
53. Thermophilic bacilli and their importance in dairy processing. Burgess SA; Lindsay D; Flint SH Int J Food Microbiol; 2010 Dec; 144(2):215-25. PubMed ID: 21047695 [TBL] [Abstract][Full Text] [Related]
54. The heat resistance and spoilage potential of aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders. Sadiq FA; Li Y; Liu T; Flint S; Zhang G; Yuan L; Pei Z; He G Int J Food Microbiol; 2016 Dec; 238():193-201. PubMed ID: 27657656 [TBL] [Abstract][Full Text] [Related]
55. Comparison of adhesion characteristics of common dairy sporeformers and their spores on unmodified and modified stainless steel contact surfaces. Jindal S; Anand S J Dairy Sci; 2018 Jul; 101(7):5799-5808. PubMed ID: 29605327 [TBL] [Abstract][Full Text] [Related]
56. Novel hyperthermoacidic archaeal enzymes for removal of thermophilic biofilms from stainless steel. Nam Y; Barnebey A; Kim HK; Yannone SM; Flint S J Appl Microbiol; 2023 Jun; 134(6):. PubMed ID: 37218716 [TBL] [Abstract][Full Text] [Related]
57. Scanning electron microscopy of dairy equipment surfaces contaminated by two milk-borne micro-organisms. Speers JG; Gilmour A; Fraser TW; McCall RD J Appl Bacteriol; 1984 Aug; 57(1):139-45. PubMed ID: 6490557 [TBL] [Abstract][Full Text] [Related]
58. Technologically important characteristics of Enterococcus isolates from milk and dairy products. Wessels D; Jooste PJ; Mostert JF Int J Food Microbiol; 1990 May; 10(3-4):349-52. PubMed ID: 2397162 [TBL] [Abstract][Full Text] [Related]
59. Prevalence of Bacillus cereus in dried milk products used by Chilean School Feeding Program. Reyes JE; Bastías JM; Gutiérrez MR; Rodríguez Mde L Food Microbiol; 2007 Feb; 24(1):1-6. PubMed ID: 16943088 [TBL] [Abstract][Full Text] [Related]
60. Short communication: bacterial ecology of high-temperature, short-time pasteurized milk processed in the United States. Ranieri ML; Boor KJ J Dairy Sci; 2009 Oct; 92(10):4833-40. PubMed ID: 19762798 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]