BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 10746772)

  • 1. Protonmotive force regulates the membrane conductance of Streptococcus bovis in a non-ohmic fashion.
    Bond DR; Russell JB
    Microbiology (Reading); 2000 Mar; 146 ( Pt 3)():687-694. PubMed ID: 10746772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-proton-motive-force-dependent sodium efflux from the ruminal bacterium Streptococcus bovis: bound versus free pools.
    Strobel HJ; Russell JB
    Appl Environ Microbiol; 1989 Oct; 55(10):2664-8. PubMed ID: 2481426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy-spilling reactions of Streptococcus bovis and resistance of its membrane to proton conductance.
    Cook GM; Russell JB
    Appl Environ Microbiol; 1994 Jun; 60(6):1942-8. PubMed ID: 8031089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of pH on the heat production and membrane resistance of Streptococcus bovis.
    Russell JB
    Arch Microbiol; 1992; 158(1):54-8. PubMed ID: 1444715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A vacuolar-type proton pump in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco hornworm midgut.
    Wieczorek H; Weerth S; Schindlbeck M; Klein U
    J Biol Chem; 1989 Jul; 264(19):11143-8. PubMed ID: 2472389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of the turnover number of the ATP synthase in liposomes with the proton flux and the proton potential across the membrane.
    Brune A; Spillecke J; Kröger A
    Biochim Biophys Acta; 1987 Oct; 893(3):499-507. PubMed ID: 2888485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP synthesis driven by a protonmotive force in Streptococcus lactis.
    Maloney PC; Wilson TH
    J Membr Biol; 1975-1976; 25(3-4):285-310. PubMed ID: 3650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient.
    Michel H; Oesterhelt D
    Biochemistry; 1980 Sep; 19(20):4607-14. PubMed ID: 7426619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exogenous energy supply to the plasma membrane of dark anaerobic cyanobacterium Anacystis nidulans: thermodynamic and kinetic characterization of the ATP synthesis effected by an artificial proton motive force.
    Peschek GA; Hinterstoisser B; Riedler M; Muchl R; Nitschmann WH
    Arch Biochem Biophys; 1986 May; 247(1):40-8. PubMed ID: 3010879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen ion gradients across the mitochondrial, endosomal and plasma membranes in bloodstream forms of trypanosoma brucei solving the three-compartment problem.
    Nolan DP; Voorheis HP
    Eur J Biochem; 2000 Aug; 267(15):4601-14. PubMed ID: 10903492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A protonmotive force drives ATP synthesis in bacteria.
    Maloney PC; Kashket ER; Wilson TH
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):3896-900. PubMed ID: 4279406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Interaction of membrane proton conductivity, membrane and oxidation-reduction potential in Escherichia coli].
    Akopian K; Zakharian E; Kirakosian G; Mnatsakanian N; Bagramian K; Trchunian A
    Biofizika; 2002; 47(6):1064-7. PubMed ID: 12500569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux.
    Otto R; Sonnenberg AS; Veldkamp H; Konings WN
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5502-6. PubMed ID: 6254084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy coupling to potassium transport in Streptococcus faecalis. Interplay of ATP and the protonmotive force.
    Bakker EP; Harold FM
    J Biol Chem; 1980 Jan; 255(2):433-40. PubMed ID: 6766127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isotope and thermal effects in chemiosmotic coupling to the membrane ATPase of Streptococcus.
    Khan S; Berg HC
    J Biol Chem; 1983 Jun; 258(11):6709-12. PubMed ID: 6222047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnitude of the protonmotive force in respiring Staphylococcus aureus and Escherichia coli.
    Collins SH; Hamilton WA
    J Bacteriol; 1976 Jun; 126(3):1224-31. PubMed ID: 7546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of inhibitors of plasma-membrane ATPase on potassium and calcium fluxes, membrane potential and proton motive force in the yeast Saccharomyces cerevisiae.
    Eilam Y; Lavi H; Grossowicz N
    Microbios; 1984; 41(165-166):177-89. PubMed ID: 6099460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical pH clamp: the forgotten resource in membrane bioenergetics.
    Wegner LH; Shabala S
    New Phytol; 2020 Jan; 225(1):37-47. PubMed ID: 31393010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli Dcu C
    Karapetyan L; Mikoyan G; Vassilian A; Valle A; Bolivar J; Trchounian A; Trchounian K
    Bioelectrochemistry; 2021 Oct; 141():107867. PubMed ID: 34118553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolysis and synthesis of ATP by membrane-bound ATPase from a motile Streptococcus.
    van der Drift C; Janssen DB; van Wezenbeek PM
    Arch Microbiol; 1978 Oct; 119(1):31-6. PubMed ID: 31147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.