BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 10747218)

  • 1. Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils.
    Haba E; Espuny MJ; Busquets M; Manresa A
    J Appl Microbiol; 2000 Mar; 88(3):379-87. PubMed ID: 10747218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D.
    George S; Jayachandran K
    J Appl Microbiol; 2013 Feb; 114(2):373-83. PubMed ID: 23164038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emulsification properties of biosurfactant produced from Pseudomonas aeruginosa RB 28.
    Sifour M; Al-Jilawi MH; Aziz GM
    Pak J Biol Sci; 2007 Apr; 10(8):1331-5. PubMed ID: 19069939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils.
    Raza ZA; Khan MS; Khalid ZM; Rehman A
    Biotechnol Lett; 2006 Oct; 28(20):1623-31. PubMed ID: 16955358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044.
    Haba E; Pinazo A; Jauregui O; Espuny MJ; Infante MR; Manresa A
    Biotechnol Bioeng; 2003 Feb; 81(3):316-22. PubMed ID: 12474254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and characterization of rhamnolipid using palm oil agricultural refinery waste.
    Radzuan MN; Banat IM; Winterburn J
    Bioresour Technol; 2017 Feb; 225():99-105. PubMed ID: 27888734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source.
    Thaniyavarn J; Chongchin A; Wanitsuksombut N; Thaniyavarn S; Pinphanichakarn P; Leepipatpiboon N; Morikawa M; Kanaya S
    J Gen Appl Microbiol; 2006 Aug; 52(4):215-22. PubMed ID: 17116970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC 10145) on waste frying oil as low cost carbon source.
    Wadekar SD; Kale SB; Lali AM; Bhowmick DN; Pratap AP
    Prep Biochem Biotechnol; 2012; 42(3):249-66. PubMed ID: 22509850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudomonas aeruginosa LBI production as an integrated process using the wastes from sunflower-oil refining as a substrate.
    Benincasa M; Accorsini FR
    Bioresour Technol; 2008 Jun; 99(9):3843-9. PubMed ID: 17698353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI.
    Nitschke M; Costa SG; Haddad R; Gonçalves LA; Eberlin MN; Contiero J
    Biotechnol Prog; 2005; 21(5):1562-6. PubMed ID: 16209563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes.
    Raza ZA; Rehman A; Khan MS; Khalid ZM
    Biodegradation; 2007 Feb; 18(1):115-21. PubMed ID: 16491304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent.
    Sathi Reddy K; Yahya Khan M; Archana K; Gopal Reddy M; Hameeda B
    Bioresour Technol; 2016 Dec; 221():291-299. PubMed ID: 27643738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-active properties of rhamnolipids from Pseudomonas aeruginosa GS3.
    Patel RM; Desai AJ
    J Basic Microbiol; 1997; 37(4):281-6. PubMed ID: 9323868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement in Production of Rhamnolipids Using Fried Oil with Hydrophilic Co-substrate by Indigenous Pseudomonas aeruginosa NJ2 and Characterizations.
    Pathania AS; Jana AK
    Appl Biochem Biotechnol; 2020 Jul; 191(3):1223-1246. PubMed ID: 32036539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant.
    Abbasi H; Hamedi MM; Lotfabad TB; Zahiri HS; Sharafi H; Masoomi F; Moosavi-Movahedi AA; Ortiz A; Amanlou M; Noghabi KA
    J Biosci Bioeng; 2012 Feb; 113(2):211-9. PubMed ID: 22036074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous pseudomonas aeruginosa WJ-1 using waste vegetable oils.
    Xia WJ; Luo ZB; Dong HP; Yu L; Cui QF; Bi YQ
    Appl Biochem Biotechnol; 2012 Mar; 166(5):1148-66. PubMed ID: 22198867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosurfactant production by Pseudomonas aeruginosa grown in residual soybean oil.
    de Lima CJ; Ribeiro EJ; Sérvulo EF; Resende MM; Cardoso VL
    Appl Biochem Biotechnol; 2009 Jan; 152(1):156-68. PubMed ID: 18427741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source.
    Moya Ramírez I; Tsaousi K; Rudden M; Marchant R; Jurado Alameda E; García Román M; Banat IM
    Bioresour Technol; 2015 Dec; 198():231-6. PubMed ID: 26398666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of vegetable oils on biosurfactant production by Serratia marcescens.
    Ferraz C; De Araújo AA; Pastore GM
    Appl Biochem Biotechnol; 2002; 98-100():841-7. PubMed ID: 12018306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Yield Di-Rhamnolipid Production by
    Li Z; Zhang Y; Lin J; Wang W; Li S
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30979013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.