These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 10747259)

  • 61. [Change in the concentration of intracellular ATP during adhesion of Rhodococcus ruber gt1 and pseudomonas fluorescens C2 cells on carbon supports].
    Maksimova IuG; Demakov VA
    Izv Akad Nauk Ser Biol; 2014; (5):456-62. PubMed ID: 25720283
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Zinc toxicity and ATP production in Pseudomonas fluorescens.
    Alhasawi A; Auger C; Appanna VP; Chahma M; Appanna VD
    J Appl Microbiol; 2014 Jul; 117(1):65-73. PubMed ID: 24629129
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0.
    Sacherer P; Défago G; Haas D
    FEMS Microbiol Lett; 1994 Feb; 116(2):155-60. PubMed ID: 8150259
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Determination of Bacterial ATP in Milk - The Influence of Adenosine Triphosphate-Hydrolyzing Enzymes from Somatic Cells and Pseudomonas fluorescens.
    Botha WC; Lück H; Jooste PJ
    J Food Prot; 1986 Oct; 49(10):822-825. PubMed ID: 30959592
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Characterization of a pyoverdine-deficient mutant of Pseudomonas fluorescens impaired in the secretion of extracellular lipase.
    Fernandez L; San José C; Cholette H; McKellar RC
    Arch Microbiol; 1988; 150(6):523-8. PubMed ID: 3144957
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of carbon dioxide on bacterial growth parameters in milk as measured by conductivity.
    Martin JD; Werner BG; Hotchkiss JH
    J Dairy Sci; 2003 Jun; 86(6):1932-40. PubMed ID: 12836927
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cellular response to a multiple-metal stress in Pseudomonas fluorescens.
    Appanna VD; St Pierre M
    J Biotechnol; 1996 Jul; 48(1-2):129-36. PubMed ID: 8818279
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Some properties of the pyruvate carboxylase from Pseudomonas fluorescens.
    Milrad de Forchetti SR; Cazzulo JJ
    J Gen Microbiol; 1976 Mar; 93(1):75-81. PubMed ID: 4579
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Extracellular protease activity of different Pseudomonas strains: dependence of proteolytic activity on culture conditions.
    Nicodème M; Grill JP; Humbert G; Gaillard JL
    J Appl Microbiol; 2005; 99(3):641-8. PubMed ID: 16108806
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Pyrimidine ribonucleoside catabolism in Pseudomonas fluorescens biotype A.
    Chu CP; West TP
    Antonie Van Leeuwenhoek; 1990 May; 57(4):253-7. PubMed ID: 2112895
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Prediction of growth of Pseudomonas fluorescens in milk during storage under fluctuating temperature.
    Lin H; Shavezipur M; Yousef A; Maleky F
    J Dairy Sci; 2016 Mar; 99(3):1822-1830. PubMed ID: 26723126
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Rate of growth of Pseudomonas fluorescens in donated blood.
    Gibb AP; Martin KM; Davidson GA; Walker B; Murphy WG
    J Clin Pathol; 1995 Aug; 48(8):717-8. PubMed ID: 7560196
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Isolation, identification, and accumulation of 2-acetamidophenol in liquid cultures of the wheat take-all biocontrol agent Pseudomonas fluorescens 2-79.
    Slininger PJ; Burkhead KD; Schisler DA; Bothast RJ
    Appl Microbiol Biotechnol; 2000 Sep; 54(3):376-81. PubMed ID: 11030575
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A century of gray: A genomic locus found in 2 distinct Pseudomonas spp. is associated with historical and contemporary color defects in dairy products worldwide.
    Reichler SJ; Martin NH; Evanowski RL; Kovac J; Wiedmann M; Orsi RH
    J Dairy Sci; 2019 Jul; 102(7):5979-6000. PubMed ID: 31128867
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mobilization of metals from uranium mine waste: the role of pyoverdines produced by Pseudomonas fluorescens.
    Edberg F; Kalinowski BE; Holmström SJ; Holm K
    Geobiology; 2010 Sep; 8(4):278-92. PubMed ID: 20456501
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Water relations of solute accumulation in Pseudomonas fluorescens.
    Prior BA; Kenyon CP; van der Veen M; Mildenhall JP
    J Appl Bacteriol; 1987 Feb; 62(2):119-28. PubMed ID: 2883169
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effect of temperature shifts on extracellular proteinase-specific mRNA pools in Pseudomonas fluorescens B52.
    McKellar RC; Cholette H
    Appl Environ Microbiol; 1987 Aug; 53(8):1973-6. PubMed ID: 2444159
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Detection of extracellular bound proteinase in EPS-producing lactic acid bacteria cultures on skim milk agar.
    Pailin T; Kang DH; Schmidt K; Fung DY
    Lett Appl Microbiol; 2001 Jul; 33(1):45-9. PubMed ID: 11442814
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Biosynthesis of an enzyme with lipoprotein lipase activity by bacterial strains of Pseudomonas genus].
    Vovk VA; Levchuk TP; Iakovlev VA
    Mikrobiologiia; 1974; 43(5):820-4. PubMed ID: 4216744
    [No Abstract]   [Full Text] [Related]  

  • 80. Membrane enzymes associated with the dissimilation of some citric acid cycle substrates and production of extracellular oxidation products in chemostat cultures of Pseudomonas fluorescens.
    Lee WS; Cooper JK; Lynch WH
    Can J Microbiol; 1984 Mar; 30(3):396-405. PubMed ID: 6426768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.