BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 10747803)

  • 1. Do cysteine 230 and lysine 238 of biotin carboxylase play a role in the activation of biotin?
    Levert KL; Lloyd RB; Waldrop GL
    Biochemistry; 2000 Apr; 39(14):4122-8. PubMed ID: 10747803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel insights into the biotin carboxylase domain reactions of pyruvate carboxylase from Rhizobium etli.
    Zeczycki TN; Menefee AL; Adina-Zada A; Jitrapakdee S; Surinya KH; Wallace JC; Attwood PV; St Maurice M; Cleland WW
    Biochemistry; 2011 Nov; 50(45):9724-37. PubMed ID: 21957995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The utility of molecular dynamics simulations for understanding site-directed mutagenesis of glycine residues in biotin carboxylase.
    Bordelon T; Nilsson Lill SO; Waldrop GL
    Proteins; 2009 Mar; 74(4):808-19. PubMed ID: 18704941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations at four active site residues of biotin carboxylase abolish substrate-induced synergism by biotin.
    Blanchard CZ; Lee YM; Frantom PA; Waldrop GL
    Biochemistry; 1999 Mar; 38(11):3393-400. PubMed ID: 10079084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic characterization of mutations found in propionic acidemia and methylcrotonylglycinuria: evidence for cooperativity in biotin carboxylase.
    Sloane V; Waldrop GL
    J Biol Chem; 2004 Apr; 279(16):15772-8. PubMed ID: 14960587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Function of Escherichia coli biotin carboxylase requires catalytic activity of both subunits of the homodimer.
    Janiyani K; Bordelon T; Waldrop GL; Cronan JE
    J Biol Chem; 2001 Aug; 276(32):29864-70. PubMed ID: 11390406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex formation and regulation of Escherichia coli acetyl-CoA carboxylase.
    Broussard TC; Price AE; Laborde SM; Waldrop GL
    Biochemistry; 2013 May; 52(19):3346-57. PubMed ID: 23594205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic characterization of yeast pyruvate carboxylase isozyme Pyc1 and the Pyc1 mutant, C249A.
    Branson JP; Nezic M; Jitrapakdee S; Wallace JC; Attwood PV
    Biochemistry; 2004 Feb; 43(4):1075-81. PubMed ID: 14744153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis of ATP binding residues of biotin carboxylase. Insight into the mechanism of catalysis.
    Sloane V; Blanchard CZ; Guillot F; Waldrop GL
    J Biol Chem; 2001 Jul; 276(27):24991-6. PubMed ID: 11346647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and numerical simulation of biotin carboxylase kinetics: implications for half-sites reactivity.
    de Queiroz MS; Waldrop GL
    J Theor Biol; 2007 May; 246(1):167-75. PubMed ID: 17266990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between the biotin carboxyl carrier domain and the biotin carboxylase domain in pyruvate carboxylase from Rhizobium etli.
    Lietzan AD; Menefee AL; Zeczycki TN; Kumar S; Attwood PV; Wallace JC; Cleland WW; St Maurice M
    Biochemistry; 2011 Nov; 50(45):9708-23. PubMed ID: 21958016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of lysine-238 of Escherichia coli biotin carboxylase as an ATP-binding residue.
    Kazuta Y; Tokunaga E; Aramaki E; Kondo H
    FEBS Lett; 1998 May; 427(3):377-80. PubMed ID: 9637261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase.
    Broussard TC; Pakhomova S; Neau DB; Bonnot R; Waldrop GL
    Biochemistry; 2015 Jun; 54(24):3860-70. PubMed ID: 26020841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biotin domain peptide from the biotin carboxyl carrier protein of Escherichia coli acetyl-CoA carboxylase causes a marked increase in the catalytic efficiency of biotin carboxylase and carboxyltransferase relative to free biotin.
    Blanchard CZ; Chapman-Smith A; Wallace JC; Waldrop GL
    J Biol Chem; 1999 Nov; 274(45):31767-9. PubMed ID: 10542197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression and kinetic characterization of the carboxyltransferase component of acetyl-CoA carboxylase.
    Blanchard CZ; Waldrop GL
    J Biol Chem; 1998 Jul; 273(30):19140-5. PubMed ID: 9668099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate specificity of archaeon Sulfolobus tokodaii biotin protein ligase.
    Sueda S; Li YQ; Kondo H; Kawarabayasi Y
    Biochem Biophys Res Commun; 2006 May; 344(1):155-9. PubMed ID: 16616010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of biotin carboxylase.
    Nilsson Lill SO; Gao J; Waldrop GL
    J Phys Chem B; 2008 Mar; 112(10):3149-56. PubMed ID: 18271571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of biotin carboxylase by a reaction intermediate analog: implications for the kinetic mechanism.
    Blanchard CZ; Amspacher D; Strongin R; Waldrop GL
    Biochem Biophys Res Commun; 1999 Dec; 266(2):466-71. PubMed ID: 10600526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The C-terminal domain of biotin protein ligase from E. coli is required for catalytic activity.
    Chapman-Smith A; Mulhern TD; Whelan F; Cronan JE; Wallace JC
    Protein Sci; 2001 Dec; 10(12):2608-17. PubMed ID: 11714929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of biotin carboxylase in complex with substrates and implications for its catalytic mechanism.
    Chou CY; Yu LP; Tong L
    J Biol Chem; 2009 Apr; 284(17):11690-7. PubMed ID: 19213731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.