These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 10747803)

  • 1. Do cysteine 230 and lysine 238 of biotin carboxylase play a role in the activation of biotin?
    Levert KL; Lloyd RB; Waldrop GL
    Biochemistry; 2000 Apr; 39(14):4122-8. PubMed ID: 10747803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel insights into the biotin carboxylase domain reactions of pyruvate carboxylase from Rhizobium etli.
    Zeczycki TN; Menefee AL; Adina-Zada A; Jitrapakdee S; Surinya KH; Wallace JC; Attwood PV; St Maurice M; Cleland WW
    Biochemistry; 2011 Nov; 50(45):9724-37. PubMed ID: 21957995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The utility of molecular dynamics simulations for understanding site-directed mutagenesis of glycine residues in biotin carboxylase.
    Bordelon T; Nilsson Lill SO; Waldrop GL
    Proteins; 2009 Mar; 74(4):808-19. PubMed ID: 18704941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations at four active site residues of biotin carboxylase abolish substrate-induced synergism by biotin.
    Blanchard CZ; Lee YM; Frantom PA; Waldrop GL
    Biochemistry; 1999 Mar; 38(11):3393-400. PubMed ID: 10079084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic characterization of mutations found in propionic acidemia and methylcrotonylglycinuria: evidence for cooperativity in biotin carboxylase.
    Sloane V; Waldrop GL
    J Biol Chem; 2004 Apr; 279(16):15772-8. PubMed ID: 14960587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Function of Escherichia coli biotin carboxylase requires catalytic activity of both subunits of the homodimer.
    Janiyani K; Bordelon T; Waldrop GL; Cronan JE
    J Biol Chem; 2001 Aug; 276(32):29864-70. PubMed ID: 11390406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex formation and regulation of Escherichia coli acetyl-CoA carboxylase.
    Broussard TC; Price AE; Laborde SM; Waldrop GL
    Biochemistry; 2013 May; 52(19):3346-57. PubMed ID: 23594205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic characterization of yeast pyruvate carboxylase isozyme Pyc1 and the Pyc1 mutant, C249A.
    Branson JP; Nezic M; Jitrapakdee S; Wallace JC; Attwood PV
    Biochemistry; 2004 Feb; 43(4):1075-81. PubMed ID: 14744153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis of ATP binding residues of biotin carboxylase. Insight into the mechanism of catalysis.
    Sloane V; Blanchard CZ; Guillot F; Waldrop GL
    J Biol Chem; 2001 Jul; 276(27):24991-6. PubMed ID: 11346647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and numerical simulation of biotin carboxylase kinetics: implications for half-sites reactivity.
    de Queiroz MS; Waldrop GL
    J Theor Biol; 2007 May; 246(1):167-75. PubMed ID: 17266990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between the biotin carboxyl carrier domain and the biotin carboxylase domain in pyruvate carboxylase from Rhizobium etli.
    Lietzan AD; Menefee AL; Zeczycki TN; Kumar S; Attwood PV; Wallace JC; Cleland WW; St Maurice M
    Biochemistry; 2011 Nov; 50(45):9708-23. PubMed ID: 21958016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of lysine-238 of Escherichia coli biotin carboxylase as an ATP-binding residue.
    Kazuta Y; Tokunaga E; Aramaki E; Kondo H
    FEBS Lett; 1998 May; 427(3):377-80. PubMed ID: 9637261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase.
    Broussard TC; Pakhomova S; Neau DB; Bonnot R; Waldrop GL
    Biochemistry; 2015 Jun; 54(24):3860-70. PubMed ID: 26020841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biotin domain peptide from the biotin carboxyl carrier protein of Escherichia coli acetyl-CoA carboxylase causes a marked increase in the catalytic efficiency of biotin carboxylase and carboxyltransferase relative to free biotin.
    Blanchard CZ; Chapman-Smith A; Wallace JC; Waldrop GL
    J Biol Chem; 1999 Nov; 274(45):31767-9. PubMed ID: 10542197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression and kinetic characterization of the carboxyltransferase component of acetyl-CoA carboxylase.
    Blanchard CZ; Waldrop GL
    J Biol Chem; 1998 Jul; 273(30):19140-5. PubMed ID: 9668099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate specificity of archaeon Sulfolobus tokodaii biotin protein ligase.
    Sueda S; Li YQ; Kondo H; Kawarabayasi Y
    Biochem Biophys Res Commun; 2006 May; 344(1):155-9. PubMed ID: 16616010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of biotin carboxylase.
    Nilsson Lill SO; Gao J; Waldrop GL
    J Phys Chem B; 2008 Mar; 112(10):3149-56. PubMed ID: 18271571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of biotin carboxylase by a reaction intermediate analog: implications for the kinetic mechanism.
    Blanchard CZ; Amspacher D; Strongin R; Waldrop GL
    Biochem Biophys Res Commun; 1999 Dec; 266(2):466-71. PubMed ID: 10600526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The C-terminal domain of biotin protein ligase from E. coli is required for catalytic activity.
    Chapman-Smith A; Mulhern TD; Whelan F; Cronan JE; Wallace JC
    Protein Sci; 2001 Dec; 10(12):2608-17. PubMed ID: 11714929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of biotin carboxylase in complex with substrates and implications for its catalytic mechanism.
    Chou CY; Yu LP; Tong L
    J Biol Chem; 2009 Apr; 284(17):11690-7. PubMed ID: 19213731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.