These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 10747807)
1. Mapping the oligomeric interface of diacylglycerol kinase by engineered thiol cross-linking: homologous sites in the transmembrane domain. Nagy JK; Lau FW; Bowie JU; Sanders CR Biochemistry; 2000 Apr; 39(14):4154-64. PubMed ID: 10747807 [TBL] [Abstract][Full Text] [Related]
2. Topology and secondary structure of the N-terminal domain of diacylglycerol kinase. Oxenoid K; Sönnichsen FD; Sanders CR Biochemistry; 2002 Oct; 41(42):12876-82. PubMed ID: 12379131 [TBL] [Abstract][Full Text] [Related]
3. Reconstitutive refolding of diacylglycerol kinase, an integral membrane protein. Gorzelle BM; Nagy JK; Oxenoid K; Lonzer WL; Cafiso DS; Sanders CR Biochemistry; 1999 Dec; 38(49):16373-82. PubMed ID: 10587463 [TBL] [Abstract][Full Text] [Related]
4. Kinetic study of folding and misfolding of diacylglycerol kinase in model membranes. Nagy JK; Lonzer WL; Sanders CR Biochemistry; 2001 Jul; 40(30):8971-80. PubMed ID: 11467959 [TBL] [Abstract][Full Text] [Related]
5. Escherichia coli diacylglycerol kinase: a case study in the application of solution NMR methods to an integral membrane protein. Vinogradova O; Badola P; Czerski L; Sönnichsen FD; Sanders CR Biophys J; 1997 Jun; 72(6):2688-701. PubMed ID: 9168044 [TBL] [Abstract][Full Text] [Related]
6. Escherichia coli diacylglycerol kinase is an alpha-helical polytopic membrane protein and can spontaneously insert into preformed lipid vesicles. Sanders CR; Czerski L; Vinogradova O; Badola P; Song D; Smith SO Biochemistry; 1996 Jul; 35(26):8610-8. PubMed ID: 8679623 [TBL] [Abstract][Full Text] [Related]
7. Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Van Horn WD; Kim HJ; Ellis CD; Hadziselimovic A; Sulistijo ES; Karra MD; Tian C; Sönnichsen FD; Sanders CR Science; 2009 Jun; 324(5935):1726-9. PubMed ID: 19556511 [TBL] [Abstract][Full Text] [Related]
8. Conformationally specific misfolding of an integral membrane protein. Oxenoid K; Sönnichsen FD; Sanders CR Biochemistry; 2001 May; 40(17):5111-8. PubMed ID: 11318632 [TBL] [Abstract][Full Text] [Related]
9. Irreversible misfolding of diacylglycerol kinase is independent of aggregation and occurs prior to trimerization and membrane association. Mi D; Kim HJ; Hadziselimovic A; Sanders CR Biochemistry; 2006 Aug; 45(33):10072-84. PubMed ID: 16906765 [TBL] [Abstract][Full Text] [Related]
10. Thiol modification of diacylglycerol kinase: dependence upon site membrane disposition and reagent hydrophobicity. Czerski L; Sanders CR FEBS Lett; 2000 Apr; 472(2-3):225-9. PubMed ID: 10788616 [TBL] [Abstract][Full Text] [Related]
11. The influenza virus M2 ion channel protein: probing the structure of the transmembrane domain in intact cells by using engineered disulfide cross-linking. Bauer CM; Pinto LH; Cross TA; Lamb RA Virology; 1999 Feb; 254(1):196-209. PubMed ID: 9927586 [TBL] [Abstract][Full Text] [Related]
12. NMR assignments for a helical 40 kDa membrane protein. Oxenoid K; Kim HJ; Jacob J; Sönnichsen FD; Sanders CR J Am Chem Soc; 2004 Apr; 126(16):5048-9. PubMed ID: 15099070 [TBL] [Abstract][Full Text] [Related]
13. Use of an in situ disulfide cross-linking strategy to map proximities between amino acid residues in transmembrane domains I and VII of the M3 muscarinic acetylcholine receptor. Hamdan FF; Ward SD; Siddiqui NA; Bloodworth LM; Wess J Biochemistry; 2002 Jun; 41(24):7647-58. PubMed ID: 12056896 [TBL] [Abstract][Full Text] [Related]
14. Nearest neighbor analysis of the SecYEG complex. 1. Identification of a SecY-SecG interface. Satoh Y; Matsumoto G; Mori H; Ito K Biochemistry; 2003 Jun; 42(24):7434-41. PubMed ID: 12809499 [TBL] [Abstract][Full Text] [Related]
15. A fluorescence method to define transmembrane alpha-helices in membrane proteins: studies with bacterial diacylglycerol kinase. Jittikoon J; East JM; Lee AG Biochemistry; 2007 Sep; 46(38):10950-9. PubMed ID: 17722884 [TBL] [Abstract][Full Text] [Related]
16. Sulfhydryl chemistry detects three conformations of the lipid binding region of Escherichia coli pyruvate oxidase. Chang YY; Cronan JE Biochemistry; 1997 Sep; 36(39):11564-73. PubMed ID: 9305946 [TBL] [Abstract][Full Text] [Related]
17. Avian 3-hydroxy-3-methylglutaryl-CoA lyase: sensitivity of enzyme activity to thiol/disulfide exchange and identification of proximal reactive cysteines. Hruz PW; Miziorko HM Protein Sci; 1992 Sep; 1(9):1144-53. PubMed ID: 1304393 [TBL] [Abstract][Full Text] [Related]
18. Dimerization of the synaptic vesicle protein synaptobrevin (vesicle-associated membrane protein) II depends on specific residues within the transmembrane segment. Laage R; Langosch D Eur J Biochem; 1997 Oct; 249(2):540-6. PubMed ID: 9370365 [TBL] [Abstract][Full Text] [Related]
19. The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Zapun A; Bardwell JC; Creighton TE Biochemistry; 1993 May; 32(19):5083-92. PubMed ID: 8494885 [TBL] [Abstract][Full Text] [Related]
20. Bolaamphiphile-class surfactants can stabilize and support the function of solubilized integral membrane proteins. Li Q; Mittal R; Huang L; Travis B; Sanders CR Biochemistry; 2009 Dec; 48(49):11606-8. PubMed ID: 19908902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]