BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10747903)

  • 1. p53 suppresses the c-Myb-induced activation of heat shock transcription factor 3.
    Tanikawa J; Ichikawa-Iwata E; Kanei-Ishii C; Nakai A; Matsuzawa S; Reed JC; Ishii S
    J Biol Chem; 2000 May; 275(20):15578-85. PubMed ID: 10747903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of c-Myb activity by tumor suppressor p53.
    Tanikawa J; Ichikawa-Iwata E; Kanei-Ishii C; Ishii S
    Blood Cells Mol Dis; 2001; 27(2):479-82. PubMed ID: 11500059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of heat shock transcription factor 3 by c-Myb in the absence of cellular stress.
    Kanei-Ishii C; Tanikawa J; Nakai A; Morimoto RI; Ishii S
    Science; 1997 Jul; 277(5323):246-8. PubMed ID: 9211854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteasome inhibition leads to the activation of all members of the heat-shock-factor family.
    Kawazoe Y; Nakai A; Tanabe M; Nagata K
    Eur J Biochem; 1998 Jul; 255(2):356-62. PubMed ID: 9716376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The DNA-binding properties of two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6.
    Nakai A; Kawazoe Y; Tanabe M; Nagata K; Morimoto RI
    Mol Cell Biol; 1995 Oct; 15(10):5268-78. PubMed ID: 7565675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reciprocal activation of HSF1 and HSF3 in brain and blood tissues: is redundancy developmentally related?
    Shabtay A; Arad Z
    Am J Physiol Regul Integr Comp Physiol; 2006 Sep; 291(3):R566-72. PubMed ID: 16497816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HSF3 is a major heat shock responsive factor duringchicken embryonic development.
    Kawazoe Y; Tanabe M; Sasai N; Nagata K; Nakai A
    Eur J Biochem; 1999 Oct; 265(2):688-97. PubMed ID: 10504401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance.
    Tanabe M; Kawazoe Y; Takeda S; Morimoto RI; Nagata K; Nakai A
    EMBO J; 1998 Mar; 17(6):1750-8. PubMed ID: 9501096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p53 suppresses c-Myb-induced trans-activation and transformation by recruiting the corepressor mSin3A.
    Tanikawa J; Nomura T; Macmillan EM; Shinagawa T; Jin W; Kokura K; Baba D; Shirakawa M; Gonda TJ; Ishii S
    J Biol Chem; 2004 Dec; 279(53):55393-400. PubMed ID: 15509555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell cycle transition under stress conditions controlled by vertebrate heat shock factors.
    Nakai A; Ishikawa T
    EMBO J; 2001 Jun; 20(11):2885-95. PubMed ID: 11387221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. c-Myb-induced trans-activation mediated by heat shock elements without sequence-specific DNA binding of c-Myb.
    Kanei-Ishii C; Yasukawa T; Morimoto RI; Ishii S
    J Biol Chem; 1994 Jun; 269(22):15768-75. PubMed ID: 8195231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants.
    Prändl R; Hinderhofer K; Eggers-Schumacher G; Schöffl F
    Mol Gen Genet; 1998 May; 258(3):269-78. PubMed ID: 9645433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HSF1 and HSF3 cooperatively regulate the heat shock response in lizards.
    Takii R; Fujimoto M; Matsuura Y; Wu F; Oshibe N; Takaki E; Katiyar A; Akashi H; Makino T; Kawata M; Nakai A
    PLoS One; 2017; 12(7):e0180776. PubMed ID: 28686674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of an inducible regulator of c-myb expression during T-cell activation.
    Phan SC; Feeley B; Withers D; Boxer LM
    Mol Cell Biol; 1996 May; 16(5):2387-93. PubMed ID: 8628306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of heat shock genes is not necessary for protection by heat shock transcription factor 1 against cell death due to a single exposure to high temperatures.
    Inouye S; Katsuki K; Izu H; Fujimoto M; Sugahara K; Yamada S; Shinkai Y; Oka Y; Katoh Y; Nakai A
    Mol Cell Biol; 2003 Aug; 23(16):5882-95. PubMed ID: 12897157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1.
    Asher G; Lotem J; Sachs L; Kahana C; Shaul Y
    Proc Natl Acad Sci U S A; 2002 Oct; 99(20):13125-30. PubMed ID: 12232053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory domain of protein stability of human P51/TAP63, a P53 homologue.
    Osada M; Inaba R; Shinohara H; Hagiwara M; Nakamura M; Ikawa Y
    Biochem Biophys Res Commun; 2001 May; 283(5):1135-41. PubMed ID: 11355891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoter specificity and stability control of the p53-related protein p73.
    Lee CW; La Thangue NB
    Oncogene; 1999 Jul; 18(29):4171-81. PubMed ID: 10435630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human T-cell lymphotropic virus type 1 Tax represses c-Myb-dependent transcription through activation of the NF-kappaB pathway and modulation of coactivator usage.
    Nicot C; Mahieux R; Pise-Masison C; Brady J; Gessain A; Yamaoka S; Franchini G
    Mol Cell Biol; 2001 Nov; 21(21):7391-402. PubMed ID: 11585920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The proximal promoter of the human cathepsin G gene conferring myeloid-specific expression includes C/EBP, c-myb and PU.1 binding sites.
    Lennartsson A; Garwicz D; Lindmark A; Gullberg U
    Gene; 2005 Aug; 356():193-202. PubMed ID: 16019164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.