BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 10747942)

  • 1. Mapping the DNA binding domain of the Zap1 zinc-responsive transcriptional activator.
    Bird A; Evans-Galea MV; Blankman E; Zhao H; Luo H; Winge DR; Eide DJ
    J Biol Chem; 2000 May; 275(21):16160-6. PubMed ID: 10747942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dual role for zinc fingers in both DNA binding and zinc sensing by the Zap1 transcriptional activator.
    Bird AJ; Zhao H; Luo H; Jensen LT; Srinivasan C; Evans-Galea M; Winge DR; Eide DJ
    EMBO J; 2000 Jul; 19(14):3704-13. PubMed ID: 10899124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two of the five zinc fingers in the Zap1 transcription factor DNA binding domain dominate site-specific DNA binding.
    Evans-Galea MV; Blankman E; Myszka DG; Bird AJ; Eide DJ; Winge DR
    Biochemistry; 2003 Feb; 42(4):1053-61. PubMed ID: 12549926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae.
    Zhao H; Eide DJ
    Mol Cell Biol; 1997 Sep; 17(9):5044-52. PubMed ID: 9271382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution structure of a Zap1 zinc-responsive domain provides insights into metalloregulatory transcriptional repression in Saccharomyces cerevisiae.
    Wang Z; Feng LS; Matskevich V; Venkataraman K; Parasuram P; Laity JH
    J Mol Biol; 2006 Apr; 357(4):1167-83. PubMed ID: 16483601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zap1 activation domain 1 and its role in controlling gene expression in response to cellular zinc status.
    Herbig A; Bird AJ; Swierczek S; McCall K; Mooney M; Wu CY; Winge DR; Eide DJ
    Mol Microbiol; 2005 Aug; 57(3):834-46. PubMed ID: 16045625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a zinc-dependent transcriptional activator from Arabidopsis.
    de Pater S; Greco V; Pham K; Memelink J; Kijne J
    Nucleic Acids Res; 1996 Dec; 24(23):4624-31. PubMed ID: 8972846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of zinc homeostasis in yeast by binding of the ZAP1 transcriptional activator to zinc-responsive promoter elements.
    Zhao H; Butler E; Rodgers J; Spizzo T; Duesterhoeft S; Eide D
    J Biol Chem; 1998 Oct; 273(44):28713-20. PubMed ID: 9786867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc binding to a regulatory zinc-sensing domain monitored in vivo by using FRET.
    Qiao W; Mooney M; Bird AJ; Winge DR; Eide DJ
    Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8674-9. PubMed ID: 16720702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of a C. elegans GATA transcription factor, ELT-1, expressed in yeast.
    Shim YH; Bonner JJ; Blumenthal T
    J Mol Biol; 1995 Nov; 253(5):665-76. PubMed ID: 7473742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Zap1 transcriptional activator negatively regulates translation of the RTC4 mRNA through the use of alternative 5' transcript leaders.
    Bird AJ; Labbé S
    Mol Microbiol; 2017 Dec; 106(5):673-677. PubMed ID: 28971534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc fingers can act as Zn2+ sensors to regulate transcriptional activation domain function.
    Bird AJ; McCall K; Kramer M; Blankman E; Winge DR; Eide DJ
    EMBO J; 2003 Oct; 22(19):5137-46. PubMed ID: 14517251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc-regulated DNA binding of the yeast Zap1 zinc-responsive activator.
    Frey AG; Bird AJ; Evans-Galea MV; Blankman E; Winge DR; Eide DJ
    PLoS One; 2011; 6(7):e22535. PubMed ID: 21799889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A carboxyl-terminal extension of the zinc finger domain contributes to the specificity and polarity of peroxisome proliferator-activated receptor DNA binding.
    Hsu MH; Palmer CN; Song W; Griffin KJ; Johnson EF
    J Biol Chem; 1998 Oct; 273(43):27988-97. PubMed ID: 9774413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo mutational analysis of the NGFI-A zinc fingers.
    Wilson TE; Day ML; Pexton T; Padgett KA; Johnston M; Milbrandt J
    J Biol Chem; 1992 Feb; 267(6):3718-24. PubMed ID: 1740423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of human GC-box-binding zinc finger protein, a new Krüppel-like zinc finger protein, by the yeast one-hybrid screening with a GC-rich target sequence.
    Lisowsky T; Polosa PL; Sagliano A; Roberti M; Gadaleta MN; Cantatore P
    FEBS Lett; 1999 Jun; 453(3):369-74. PubMed ID: 10405178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zap1-dependent transcription from an alternative upstream promoter controls translation of RTC4 mRNA in zinc-deficient Saccharomyces cerevisiae.
    Taggart J; MacDiarmid CW; Haws S; Eide DJ
    Mol Microbiol; 2017 Dec; 106(5):678-689. PubMed ID: 28963784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of unique DNA-binding and transcriptional-activation functions in the carboxyl-terminal extension of the zinc finger region in the human vitamin D receptor.
    Hsieh JC; Whitfield GK; Oza AK; Dang HT; Price JN; Galligan MA; Jurutka PW; Thompson PD; Haussler CA; Haussler MR
    Biochemistry; 1999 Dec; 38(49):16347-58. PubMed ID: 10587460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional activation function of zinc finger protein TIS11 and its negative regulation by phorbol ester.
    Murata T; Hikita K; Kaneda N
    Biochem Biophys Res Commun; 2000 Aug; 274(2):526-32. PubMed ID: 10913371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The zinc finger protein ZNF658 regulates the transcription of genes involved in zinc homeostasis and affects ribosome biogenesis through the zinc transcriptional regulatory element.
    Ogo OA; Tyson J; Cockell SJ; Howard A; Valentine RA; Ford D
    Mol Cell Biol; 2015 Mar; 35(6):977-87. PubMed ID: 25582195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.