These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 10747943)

  • 21. Cyclophilin-promoted folding of mouse dihydrofolate reductase does not include the slow conversion of the late-folding intermediate to the active enzyme.
    von Ahsen O; Lim JH; Caspers P; Martin F; Schönfeld HJ; Rassow J; Pfanner N
    J Mol Biol; 2000 Mar; 297(3):809-18. PubMed ID: 10731431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymmetric effect of domain interactions on the kinetics of folding in yeast phosphoglycerate kinase.
    Osváth S; Köhler G; Závodszky P; Fidy J
    Protein Sci; 2005 Jun; 14(6):1609-16. PubMed ID: 15883189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How native-state topology affects the folding of dihydrofolate reductase and interleukin-1beta.
    Clementi C; Jennings PA; Onuchic JN
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5871-6. PubMed ID: 10811910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The relationship between chain connectivity and domain stability in the equilibrium and kinetic folding mechanisms of dihydrofolate reductase from E.coli.
    Svensson AK; Zitzewitz JA; Matthews CR; Smith VF
    Protein Eng Des Sel; 2006 Apr; 19(4):175-85. PubMed ID: 16452118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Denatured states of yeast phosphoglycerate kinase.
    Damaschun G; Damaschun H; Gast K; Zirwer D
    Biochemistry (Mosc); 1998 Mar; 63(3):259-75. PubMed ID: 9526123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unfolding-refolding of the domains in yeast phosphoglycerate kinase: comparison with the isolated engineered domains.
    Missiakas D; Betton JM; Minard P; Yon JM
    Biochemistry; 1990 Sep; 29(37):8683-9. PubMed ID: 2271549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupling effects of distal loops on structural stability and enzymatic activity of Escherichia coli dihydrofolate reductase revealed by deletion mutants.
    Horiuchi Y; Ohmae E; Tate S; Gekko K
    Biochim Biophys Acta; 2010 Apr; 1804(4):846-55. PubMed ID: 20045086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Circularly permuted dihydrofolate reductase of E. coli has functional activity and a destabilized tertiary structure.
    Protasova NYu ; Kireeva ML; Murzina NV; Murzin AG; Uversky VN; Gryaznova OI; Gudkov AT
    Protein Eng; 1994 Nov; 7(11):1373-7. PubMed ID: 7700869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cold denaturation of yeast phosphoglycerate kinase: kinetics of changes in secondary structure and compactness on unfolding and refolding.
    Gast K; Damaschun G; Damaschun H; Misselwitz R; Zirwer D
    Biochemistry; 1993 Aug; 32(30):7747-52. PubMed ID: 8347583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of the C-terminal helix in the folding and stability of yeast phosphoglycerate kinase.
    Ritco-Vonsovici M; Mouratou B; Minard P; Desmadril M; Yon JM; Andrieux M; Leroy E; Guittet E
    Biochemistry; 1995 Jan; 34(3):833-41. PubMed ID: 7827042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of proteolytic susceptibility in phosphoglycerate kinases from yeast and E. coli: modulation of conformational ensembles without altering structure or stability.
    Young TA; Skordalakes E; Marqusee S
    J Mol Biol; 2007 May; 368(5):1438-47. PubMed ID: 17397866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyclophilin catalyzes protein folding in yeast mitochondria.
    Matouschek A; Rospert S; Schmid K; Glick BS; Schatz G
    Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6319-23. PubMed ID: 7603990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure-guided SCHEMA recombination of distantly related beta-lactamases.
    Meyer MM; Hochrein L; Arnold FH
    Protein Eng Des Sel; 2006 Dec; 19(12):563-70. PubMed ID: 17090554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Collapse of parallel folding channels in dihydrofolate reductase from Escherichia coli by site-directed mutagenesis.
    Iwakura M; Jones BE; Falzone CJ; Matthews CR
    Biochemistry; 1993 Dec; 32(49):13566-74. PubMed ID: 8257692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Systematic circular permutation of an entire protein reveals essential folding elements.
    Iwakura M; Nakamura T; Yamane C; Maki K
    Nat Struct Biol; 2000 Jul; 7(7):580-5. PubMed ID: 10876245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of the difference in the unfolded-state ensemble on the folding of Escherichia coli dihydrofolate reductase.
    Arai M; Kataoka M; Kuwajima K; Matthews CR; Iwakura M
    J Mol Biol; 2003 Jun; 329(4):779-91. PubMed ID: 12787677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Native Escherichia coli and murine dihydrofolate reductases contain late-folding non-native structures.
    Clark AC; Frieden C
    J Mol Biol; 1999 Jan; 285(4):1765-76. PubMed ID: 9917410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing intradomain and interdomain conformational changes during equilibrium unfolding of phosphoglycerate kinase: fluorescence and circular dichroism study of tryptophan mutants.
    Sherman MA; Beechem JM; Mas MT
    Biochemistry; 1995 Oct; 34(42):13934-42. PubMed ID: 7577989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multistate equilibrium unfolding of Escherichia coli dihydrofolate reductase: thermodynamic and spectroscopic description of the native, intermediate, and unfolded ensembles.
    Ionescu RM; Smith VF; O'Neill JC; Matthews CR
    Biochemistry; 2000 Aug; 39(31):9540-50. PubMed ID: 10924151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased folding stability of TEM-1 beta-lactamase by in vitro selection.
    Kather I; Jakob RP; Dobbek H; Schmid FX
    J Mol Biol; 2008 Oct; 383(1):238-51. PubMed ID: 18706424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.