BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10748130)

  • 21. Presence of a putative vesicular inositol 1,4,5-trisphosphate-sensitive nucleoplasmic Ca2+ store.
    Huh YH; Huh SK; Chu SY; Kweon HS; Yoo SH
    Biochemistry; 2006 Feb; 45(5):1362-73. PubMed ID: 16445278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. pH-dependent interaction of an intraluminal loop of inositol 1,4,5-trisphosphate receptor with chromogranin A.
    Yoo SH; Lewis MS
    FEBS Lett; 1994 Mar; 341(1):28-32. PubMed ID: 8137917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Presence of a nucleoplasmic complex composed of the inositol 1,4,5-trisphosphate receptor/Ca2+ channel, chromogranin B, and phospholipids.
    Yoo SH; Nam SW; Huh SK; Park SY; Huh YH
    Biochemistry; 2005 Jun; 44(25):9246-54. PubMed ID: 15966749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inositol 1,4,5-trisphosphate receptor and chromogranins A and B in secretory granules. Co-localization and functional coupling.
    Yoo SH; Kang MK; Kwon HS; Lee JS; So SH; Ahn T; Jeon CJ
    Adv Exp Med Biol; 2000; 482():83-94. PubMed ID: 11192603
    [No Abstract]   [Full Text] [Related]  

  • 25. Comparison of and chromogranin effect on inositol 1,4,5-trisphosphate sensitivity of cytoplasmic and nucleoplasmic inositol 1,4,5-trisphosphate receptor/Ca2+ channels.
    Huh YH; Kim KD; Yoo SH
    Biochemistry; 2007 Dec; 46(49):14032-43. PubMed ID: 17997581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fertilization and inositol 1,4,5-trisphosphate (IP3)-induced calcium release in type-1 inositol 1,4,5-trisphosphate receptor down-regulated bovine eggs.
    Malcuit C; Knott JG; He C; Wainwright T; Parys JB; Robl JM; Fissore RA
    Biol Reprod; 2005 Jul; 73(1):2-13. PubMed ID: 15744020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional analysis of the green fluorescent protein-tagged inositol 1,4,5-trisphosphate receptor type 3 in Ca(2+) release and entry in DT40 B lymphocytes.
    Morita T; Tanimura A; Nezu A; Kurosaki T; Tojyo Y
    Biochem J; 2004 Sep; 382(Pt 3):793-801. PubMed ID: 15175012
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inositol 1,4,5-trisphosphate receptors, secretory granules and secretion in endocrine and neuroendocrine cells.
    Blondel O; Bell GI; Seino S
    Trends Neurosci; 1995 Apr; 18(4):157-61. PubMed ID: 7778186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. pH- and Ca(2+)-dependent aggregation property of secretory vesicle matrix proteins and the potential role of chromogranins A and B in secretory vesicle biogenesis.
    Yoo SH
    J Biol Chem; 1996 Jan; 271(3):1558-65. PubMed ID: 8576153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. pH-dependent association of chromogranin A with secretory vesicle membrane and a putative membrane binding region of chromogranin A.
    Yoo SH
    Biochemistry; 1993 Aug; 32(32):8213-9. PubMed ID: 8347621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microinjection of Ca2+ store-enriched microsome fractions to dividing newt eggs induces extra-cleavage furrows via inositol 1,4,5-trisphosphate-induced Ca2+ release.
    Mitsuyama F; Sawai T; Carafoli E; Furuichi T; Mikoshiba K
    Dev Biol; 1999 Oct; 214(1):160-7. PubMed ID: 10491265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction between an intraluminal loop peptide of the inositol 1,4,5-trisphosphate receptor and the near N-terminal peptide of chromogranin A.
    Yoo SH; Lewis MS
    FEBS Lett; 1998 May; 427(1):55-8. PubMed ID: 9613599
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyclic AMP-dependent phosphorylation of an immunoaffinity-purified homotetrameric inositol 1,4,5-trisphosphate receptor (type I) increases Ca2+ flux in reconstituted lipid vesicles.
    Nakade S; Rhee SK; Hamanaka H; Mikoshiba K
    J Biol Chem; 1994 Mar; 269(9):6735-42. PubMed ID: 8120033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insulin-like growth factor-1 induces an inositol 1,4,5-trisphosphate-dependent increase in nuclear and cytosolic calcium in cultured rat cardiac myocytes.
    Ibarra C; Estrada M; Carrasco L; Chiong M; Liberona JL; Cardenas C; Díaz-Araya G; Jaimovich E; Lavandero S
    J Biol Chem; 2004 Feb; 279(9):7554-65. PubMed ID: 14660553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of the inositol trisphosphate receptor of mouse eggs and A7r5 cells by KN-93 via a mechanism unrelated to Ca2+/calmodulin-dependent protein kinase II antagonism.
    Smyth JT; Abbott AL; Lee B; Sienaert I; Kasri NN; De Smedt H; Ducibella T; Missiaen L; Parys JB; Fissore RA
    J Biol Chem; 2002 Sep; 277(38):35061-70. PubMed ID: 12121980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Purification, pH-dependent conformational change, aggregation, and secretory granule membrane binding property of secretogranin II (chromogranin C).
    Park HY; So SH; Lee WB; You SH; Yoo SH
    Biochemistry; 2002 Jan; 41(4):1259-66. PubMed ID: 11802725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional properties of recombinant type I and type III inositol 1, 4,5-trisphosphate receptor isoforms expressed in COS-7 cells.
    Boehning D; Joseph SK
    J Biol Chem; 2000 Jul; 275(28):21492-9. PubMed ID: 10764774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterooligomer of type 1 and type 2 inositol 1, 4, 5-trisphosphate receptor expressed in rat liver membrane fraction exists as tetrameric complex.
    Onoue H; Tanaka H; Tanaka K; Doira N; Ito Y
    Biochem Biophys Res Commun; 2000 Jan; 267(3):928-33. PubMed ID: 10673393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oscillations of pH inside the secretory granule control the gain of Ca2+ release for signal transduction in goblet cell exocytosis.
    Chin WC; Quesada I; Nguyen T; Verdugo P
    Novartis Found Symp; 2002; 248():132-41; discussion 141-9, 277-82. PubMed ID: 12568492
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conformational changes in plant Ins(1,4,5)P3 receptor on interaction with different myo-inositol trisphosphates and its effect on Ca2+ release from microsomal fraction and liposomes.
    Dasgupta S; Dasgupta D; Chatterjee A; Biswas S; Biswas BB
    Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):355-60. PubMed ID: 9020866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.