BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10748130)

  • 41. Evidence that zymogen granules do not function as an intracellular Ca2+ store for the generation of the Ca2+ signal in rat parotid acinar cells.
    Nezu A; Tanimura A; Morita T; Irie K; Yajima T; Tojyo Y
    Biochem J; 2002 Apr; 363(Pt 1):59-66. PubMed ID: 11903047
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Astrocytes in adult rat brain express type 2 inositol 1,4,5-trisphosphate receptors.
    Holtzclaw LA; Pandhit S; Bare DJ; Mignery GA; Russell JT
    Glia; 2002 Jul; 39(1):69-84. PubMed ID: 12112377
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of the Ca(2+)-dependent calmodulin-binding region of chromogranin A.
    Yoo SH
    Biochemistry; 1992 Jul; 31(26):6134-40. PubMed ID: 1627556
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Creation of an inositol 1,4,5-trisphosphate-sensitive Ca2+ store in secretory granules of insulin-producing cells.
    Blondel O; Bell GI; Moody M; Miller RJ; Gibbons SJ
    J Biol Chem; 1994 Nov; 269(44):27167-70. PubMed ID: 7961623
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Differential modulation of inositol 1,4,5-trisphosphate receptor type 1 and type 3 by ATP.
    Maes K; Missiaen L; De Smet P; Vanlingen S; Callewaert G; Parys JB; De Smedt H
    Cell Calcium; 2000 May; 27(5):257-67. PubMed ID: 10859592
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Processing of chromogranin A by bovine parathyroid secretory granules: production and secretion of N-terminal fragments.
    Drees BM; Hamilton JW
    Endocrinology; 1994 May; 134(5):2057-63. PubMed ID: 8156905
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The suppressor domain of inositol 1,4,5-trisphosphate receptor plays an essential role in the protection against apoptosis.
    Szlufcik K; Bultynck G; Callewaert G; Missiaen L; Parys JB; De Smedt H
    Cell Calcium; 2006 Apr; 39(4):325-36. PubMed ID: 16458354
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inositol 1,4,5-trisphosphate IP(3) receptors and their role in neuronal cell function.
    Mikoshiba K
    J Neurochem; 2006 Jun; 97(6):1627-33. PubMed ID: 16805773
    [TBL] [Abstract][Full Text] [Related]  

  • 49. TGF-beta-induced Ca(2+) influx involves the type III IP(3) receptor and regulates actin cytoskeleton.
    McGowan TA; Madesh M; Zhu Y; Wang L; Russo M; Deelman L; Henning R; Joseph S; Hajnoczky G; Sharma K
    Am J Physiol Renal Physiol; 2002 May; 282(5):F910-20. PubMed ID: 11934702
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of pH and Ca2+ on monomer-dimer and monomer-tetramer equilibria of chromogranin A.
    Yoo SH; Lewis MS
    J Biol Chem; 1992 Jun; 267(16):11236-41. PubMed ID: 1597459
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of mutation of a calmodulin binding site on Ca2+ regulation of inositol trisphosphate receptors.
    Zhang X; Joseph SK
    Biochem J; 2001 Dec; 360(Pt 2):395-400. PubMed ID: 11716768
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ca(2+)-sensor region of IP(3) receptor controls intracellular Ca(2+) signaling.
    Miyakawa T; Mizushima A; Hirose K; Yamazawa T; Bezprozvanny I; Kurosaki T; Iino M
    EMBO J; 2001 Apr; 20(7):1674-80. PubMed ID: 11285231
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inositol 1,4,5-trisphosphate (InsP3) and calcium interact to increase the dynamic range of InsP3 receptor-dependent calcium signaling.
    Kaftan EJ; Ehrlich BE; Watras J
    J Gen Physiol; 1997 Nov; 110(5):529-38. PubMed ID: 9348325
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Targeted expression of the inositol 1,4,5-triphosphate receptor (IP3R) ligand-binding domain releases Ca2+ via endogenous IP3R channels.
    VĂ¡rnai P; Balla A; Hunyady L; Balla T
    Proc Natl Acad Sci U S A; 2005 May; 102(22):7859-64. PubMed ID: 15911776
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two different but converging messenger pathways to intracellular Ca(2+) release: the roles of nicotinic acid adenine dinucleotide phosphate, cyclic ADP-ribose and inositol trisphosphate.
    Cancela JM; Gerasimenko OV; Gerasimenko JV; Tepikin AV; Petersen OH
    EMBO J; 2000 Jun; 19(11):2549-57. PubMed ID: 10835353
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reduced nicotinamide adenine dinucleotide-selective stimulation of inositol 1,4,5-trisphosphate receptors mediates hypoxic mobilization of calcium.
    Kaplin AI; Snyder SH; Linden DJ
    J Neurosci; 1996 Mar; 16(6):2002-11. PubMed ID: 8604044
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Inositol 1,4,5 trisphosphate (IP3) receptor].
    Mikoshiba K
    Nihon Yakurigaku Zasshi; 2003 Apr; 121(4):241-53. PubMed ID: 12777843
    [TBL] [Abstract][Full Text] [Related]  

  • 58. pH- and Ca(2+)-induced conformational change and aggregation of chromogranin B. Comparison with chromogranin A and implication in secretory vesicle biogenesis.
    Yoo SH
    J Biol Chem; 1995 May; 270(21):12578-83. PubMed ID: 7759505
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fast biphasic regulation of type 3 inositol trisphosphate receptors by cytosolic calcium.
    Swatton JE; Taylor CW
    J Biol Chem; 2002 May; 277(20):17571-9. PubMed ID: 11875073
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evidence for the existence of secretory granule (dense-core vesicle)-based inositol 1,4,5-trisphosphate-dependent Ca2+ signaling system in astrocytes.
    Hur YS; Kim KD; Paek SH; Yoo SH
    PLoS One; 2010 Aug; 5(8):e11973. PubMed ID: 20700485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.