BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 10748189)

  • 1. Reverse gyrase, the two domains intimately cooperate to promote positive supercoiling.
    Déclais AC; Marsault J; Confalonieri F; de La Tour CB; Duguet M
    J Biol Chem; 2000 Jun; 275(26):19498-504. PubMed ID: 10748189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP; Klostermeier D
    J Mol Biol; 2007 Aug; 371(1):197-209. PubMed ID: 17560602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A β-hairpin is a Minimal Latch that Supports Positive Supercoiling by Reverse Gyrase.
    Collin F; Weisslocker-Schaetzel M; Klostermeier D
    J Mol Biol; 2020 Jul; 432(16):4762-4771. PubMed ID: 32592697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse gyrase--recent advances and current mechanistic understanding of positive DNA supercoiling.
    Lulchev P; Klostermeier D
    Nucleic Acids Res; 2014 Jul; 42(13):8200-13. PubMed ID: 25013168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissection of reverse gyrase activities: insight into the evolution of a thermostable molecular machine.
    Valenti A; Perugino G; D'Amaro A; Cacace A; Napoli A; Rossi M; Ciaramella M
    Nucleic Acids Res; 2008 Aug; 36(14):4587-97. PubMed ID: 18614606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of Thermotoga maritima reverse gyrase: inferences for the mechanism of positive DNA supercoiling.
    Rudolph MG; del Toro Duany Y; Jungblut SP; Ganguly A; Klostermeier D
    Nucleic Acids Res; 2013 Jan; 41(2):1058-70. PubMed ID: 23209025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the role of the latch in the positive supercoiling mechanism of reverse gyrase.
    Rodríguez AC
    Biochemistry; 2003 May; 42(20):5993-6004. PubMed ID: 12755601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse gyrase transiently unwinds double-stranded DNA in an ATP-dependent reaction.
    Ganguly A; del Toro Duany Y; Klostermeier D
    J Mol Biol; 2013 Jan; 425(1):32-40. PubMed ID: 23123378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse gyrase: a helicase-like domain and a type I topoisomerase in the same polypeptide.
    Confalonieri F; Elie C; Nadal M; de La Tour C; Forterre P; Duguet M
    Proc Natl Acad Sci U S A; 1993 May; 90(10):4753-7. PubMed ID: 8389456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of reverse gyrase with a minimal latch that supports ATP-dependent positive supercoiling without specific interactions with the topoisomerase domain.
    Mhaindarkar VP; Rasche R; Kümmel D; Rudolph MG; Klostermeier D
    Acta Crystallogr D Struct Biol; 2023 Jun; 79(Pt 6):498-507. PubMed ID: 37204816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of reverse gyrase from Sulfolobus shibatae. Its proteolytic product appears as an ATP-independent topoisomerase.
    Nadal M; Couderc E; Duguet M; Jaxel C
    J Biol Chem; 1994 Feb; 269(7):5255-63. PubMed ID: 8106509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The acidic C-terminal tail of the GyrA subunit moderates the DNA supercoiling activity of Bacillus subtilis gyrase.
    Lanz MA; Farhat M; Klostermeier D
    J Biol Chem; 2014 May; 289(18):12275-85. PubMed ID: 24563461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The latch modulates nucleotide and DNA binding to the helicase-like domain of Thermotoga maritima reverse gyrase and is required for positive DNA supercoiling.
    Ganguly A; Del Toro Duany Y; Rudolph MG; Klostermeier D
    Nucleic Acids Res; 2011 Mar; 39(5):1789-800. PubMed ID: 21051354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of the helicase-like domain of Thermotoga maritima reverse gyrase.
    de la Tour CB; Amrani L; Cossard R; Neuman KC; Serre MC; Duguet M
    J Biol Chem; 2008 Oct; 283(41):27395-27402. PubMed ID: 18614530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reverse gyrase from Methanopyrus kandleri. Reconstitution of an active extremozyme from its two recombinant subunits.
    Krah R; O'Dea MH; Gellert M
    J Biol Chem; 1997 May; 272(21):13986-90. PubMed ID: 9153263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The conformational flexibility of the helicase-like domain from Thermotoga maritima reverse gyrase is restricted by the topoisomerase domain.
    del Toro Duany Y; Klostermeier D; Rudolph MG
    Biochemistry; 2011 Jul; 50(26):5816-23. PubMed ID: 21627332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea.
    Forterre P; Bergerat A; Lopez-Garcia P
    FEMS Microbiol Rev; 1996 May; 18(2-3):237-48. PubMed ID: 8639331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse gyrase binding to DNA alters the double helix structure and produces single-strand cleavage in the absence of ATP.
    Jaxel C; Nadal M; Mirambeau G; Forterre P; Takahashi M; Duguet M
    EMBO J; 1989 Oct; 8(10):3135-9. PubMed ID: 2555155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional interaction of reverse gyrase with single-strand binding protein of the archaeon Sulfolobus.
    Napoli A; Valenti A; Salerno V; Nadal M; Garnier F; Rossi M; Ciaramella M
    Nucleic Acids Res; 2005; 33(2):564-76. PubMed ID: 15673717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reverse gyrase from Pyrobaculum calidifontis, a novel extremely thermophilic DNA topoisomerase endowed with DNA unwinding and annealing activities.
    Jamroze A; Perugino G; Valenti A; Rashid N; Rossi M; Akhtar M; Ciaramella M
    J Biol Chem; 2014 Feb; 289(6):3231-43. PubMed ID: 24347172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.