These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10748287)

  • 1. Uniqueness of limit cycle in the predator-prey system with symmetric prey isocline.
    Hasík K
    Math Biosci; 2000 Apr; 164(2):203-15. PubMed ID: 10748287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On a predator-prey system of Gause type.
    Hasík K
    J Math Biol; 2010 Jan; 60(1):59-74. PubMed ID: 19274463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditions for uniqueness of limit cycles in general predator-prey systems.
    Huang XC; Merrill SJ
    Math Biosci; 1989 Sep; 96(1):47-60. PubMed ID: 2520191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-shaped prey isocline in the Gause predator-prey experiments with a prey refuge.
    Křivan V; Priyadarshi A
    J Theor Biol; 2015 Apr; 370():21-6. PubMed ID: 25644756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Gause predator-prey model with a refuge: a fresh look at the history.
    Křivan V
    J Theor Biol; 2011 Apr; 274(1):67-73. PubMed ID: 21255587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey.
    González-Olivares E; González-Yañez B; Mena-Lorca J; Flores JD
    Math Biosci Eng; 2013 Apr; 10(2):345-67. PubMed ID: 23458304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple limit cycles for predator-prey models.
    Hofbauer J; So JW
    Math Biosci; 1990 Apr; 99(1):71-5. PubMed ID: 2134514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system.
    Hsu SB; Hwang TW; Kuang Y
    J Math Biol; 2001 Jun; 42(6):489-506. PubMed ID: 11484858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavioral refuges and predator-prey coexistence.
    Křivan V
    J Theor Biol; 2013 Dec; 339():112-21. PubMed ID: 23291567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predator-prey system with strong Allee effect in prey.
    Wang J; Shi J; Wei J
    J Math Biol; 2011 Mar; 62(3):291-331. PubMed ID: 20224917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On Liénard's equation and the uniqueness of limit cycles in predator-prey systems.
    Moreira HN
    J Math Biol; 1990; 28(3):341-54. PubMed ID: 2332710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometric criteria for the non-existence of cycles in predator-prey systems with group defense.
    Liu Y
    Math Biosci; 2007 Jul; 208(1):193-204. PubMed ID: 17125802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey.
    Kooi BW; Venturino E
    Math Biosci; 2016 Apr; 274():58-72. PubMed ID: 26874217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamics of two diffusively coupled predator-prey populations.
    Jansen VA
    Theor Popul Biol; 2001 Mar; 59(2):119-31. PubMed ID: 11302757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A non-autonomous stochastic predator-prey model.
    Buonocore A; Caputo L; Pirozzi E; Nobile AG
    Math Biosci Eng; 2014 Apr; 11(2):167-88. PubMed ID: 24245713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of a disease affecting a predator on the dynamics of a predator-prey system.
    Auger P; McHich R; Chowdhury T; Sallet G; Tchuente M; Chattopadhyay J
    J Theor Biol; 2009 Jun; 258(3):344-51. PubMed ID: 19063903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consequences of symbiosis for food web dynamics.
    Kooi BW; Kuijper LD; Kooijman SA
    J Math Biol; 2004 Sep; 49(3):227-71. PubMed ID: 15293013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of predator density dependent dispersal of prey on stability of a predator-prey system.
    Mchich R; Auger P; Poggiale JC
    Math Biosci; 2007 Apr; 206(2):343-56. PubMed ID: 16455112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A derivation of Holling's type I, II and III functional responses in predator-prey systems.
    Dawes JH; Souza MO
    J Theor Biol; 2013 Jun; 327():11-22. PubMed ID: 23500600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple limit cycles in a Gause type predator-prey model with Holling type III functional response and Allee effect on prey.
    González-Olivares E; Rojas-Palma A
    Bull Math Biol; 2011 Jun; 73(6):1378-97. PubMed ID: 20830610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.