These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 10748331)

  • 1. Effects of exposure to an augmented acoustic environment on auditory function in mice: roles of hearing loss and age during treatment.
    Willott JF; Turner JG; Sundin VS
    Hear Res; 2000 Apr; 142(1-2):79-88. PubMed ID: 10748331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure to an augmented acoustic environment alters auditory function in hearing-impaired DBA/2J mice.
    Turner JG; Willott JF
    Hear Res; 1998 Apr; 118(1-2):101-13. PubMed ID: 9606065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prolonged exposure to an augmented acoustic environment ameliorates age-related auditory changes in C57BL/6J and DBA/2J mice.
    Willott JF; Turner JG
    Hear Res; 1999 Sep; 135(1-2):78-88. PubMed ID: 10491957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prepulse inhibition of the acoustic startle reflex vs. auditory brainstem response for hearing assessment.
    Longenecker RJ; Alghamdi F; Rosen MJ; Galazyuk AV
    Hear Res; 2016 Sep; 339():80-93. PubMed ID: 27349914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic experience alters the aged auditory system.
    Turner JG; Parrish JL; Zuiderveld L; Darr S; Hughes LF; Caspary DM; Idrezbegovic E; Canlon B
    Ear Hear; 2013; 34(2):151-9. PubMed ID: 23086424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of prolonged exposure to an augmented acoustic environment on the auditory system of middle-aged C57BL/6J mice: cochlear and central histology and sex differences.
    Willott JF; Bross L
    J Comp Neurol; 2004 May; 472(3):358-70. PubMed ID: 15065130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of prepulse inhibition by an augmented acoustic environment in DBA/2J mice.
    Jeskey JE; Willott JF
    Behav Neurosci; 2000 Oct; 114(5):991-7. PubMed ID: 11085614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural plasticity in the mouse inferior colliculus: relationship to hearing loss, augmented acoustic stimulation, and prepulse inhibition.
    Willott JF; Turner JG
    Hear Res; 2000 Sep; 147(1-2):275-81. PubMed ID: 10962191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The BALB/c mouse as an animal model for progressive sensorineural hearing loss.
    Willott JF; Turner JG; Carlson S; Ding D; Seegers Bross L; Falls WA
    Hear Res; 1998 Jan; 115(1-2):162-74. PubMed ID: 9472745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rescuing Auditory Temporal Processing with a Novel Augmented Acoustic Environment in an Animal Model of Congenital Hearing Loss.
    Dziorny AC; Luebke AE; Scott LL; Walton JP
    eNeuro; 2021; 8(4):. PubMed ID: 34155086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of exposing gonadectomized and intact C57BL/6J mice to a high-frequency augmented acoustic environment: Auditory brainstem response thresholds and cytocochleograms.
    Willott JF; VandenBosche J; Shimizu T; Ding DL; Salvi R
    Hear Res; 2006 Nov; 221(1-2):73-81. PubMed ID: 16973316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of exposing C57BL/6J mice to high- and low-frequency augmented acoustic environments: auditory brainstem response thresholds, cytocochleograms, anterior cochlear nucleus morphology and the role of gonadal hormones.
    Willott JF; VandenBosche J; Shimizu T; Ding DL; Salvi R
    Hear Res; 2008 Jan; 235(1-2):60-71. PubMed ID: 18077117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of acoustic environment after traumatic noise exposure on hearing and outer hair cells.
    Tanaka C; Chen GD; Hu BH; Chi LH; Li M; Zheng G; Bielefeld EC; Jamesdaniel S; Coling D; Henderson D
    Hear Res; 2009 Apr; 250(1-2):10-8. PubMed ID: 19450428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of exposing DBA/2J mice to a high-frequency augmented acoustic environment on the cochlea and anteroventral cochlear nucleus.
    Willott JF; Bosch JV; Shimizu T; Ding DL
    Hear Res; 2006; 216-217():138-45. PubMed ID: 16497456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic influences on susceptibility of the auditory system to aging and environmental factors.
    Li HS
    Scand Audiol Suppl; 1992; 36():1-39. PubMed ID: 1488615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-frequency tone pips elicit exaggerated startle reflexes in C57BL/6J mice with hearing loss.
    Ison JR; Allen PD
    J Assoc Res Otolaryngol; 2003 Dec; 4(4):495-504. PubMed ID: 12784135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ameliorative effects of exposing DBA/2J mice to an augmented acoustic environment on histological changes in the cochlea and anteroventral cochlear nucleus.
    Willott JF; Bross LS; McFadden S
    J Assoc Res Otolaryngol; 2005 Sep; 6(3):234-43. PubMed ID: 15983726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of age-related hearing loss on startle reflex and prepulse inhibition in mice on pure and mixed C57BL and 129 genetic background.
    Ouagazzal AM; Reiss D; Romand R
    Behav Brain Res; 2006 Sep; 172(2):307-15. PubMed ID: 16814879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cisplatin-induced threshold shift in the CBA/CaJ, C57BL/6J, BALB/cJ mouse models of hearing loss.
    DeBacker JR; Harrison RT; Bielefeld EC
    Hear Res; 2020 Mar; 387():107878. PubMed ID: 31911334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A comparison of low-chirp- and notched-noise-evoked auditory brainstem response].
    Mühlenberg L; Schade G
    Laryngorhinootologie; 2012 Aug; 91(8):500-4. PubMed ID: 22135225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.