These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 10749211)

  • 41. High synaptic threshold for dendritic NMDA spike generation in human layer 2/3 pyramidal neurons.
    Testa-Silva G; Rosier M; Honnuraiah S; Guzulaitis R; Megias AM; French C; King J; Drummond K; Palmer LM; Stuart GJ
    Cell Rep; 2022 Dec; 41(11):111787. PubMed ID: 36516769
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synaptically activated Ca2+ waves and NMDA spikes locally suppress voltage-dependent Ca2+ signalling in rat pyramidal cell dendrites.
    Manita S; Miyazaki K; Ross WN
    J Physiol; 2011 Oct; 589(Pt 20):4903-20. PubMed ID: 21844002
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons.
    Gasparini S; Migliore M; Magee JC
    J Neurosci; 2004 Dec; 24(49):11046-56. PubMed ID: 15590921
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Amplification and linearization of distal synaptic input to cortical pyramidal cells.
    Bernander O; Koch C; Douglas RJ
    J Neurophysiol; 1994 Dec; 72(6):2743-53. PubMed ID: 7897486
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dendritic excitability in CNS neurons: insights from dynamic calcium and sodium imaging in single cells.
    Ross WN; Miyakawa H; Lev-Ram V; Lasser-Ross N; Lisman J; Jaffe D; Johnston D
    Jpn J Physiol; 1993; 43 Suppl 1():S83-9. PubMed ID: 8271520
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dendritic NMDA spikes are necessary for timing-dependent associative LTP in CA3 pyramidal cells.
    Brandalise F; Carta S; Helmchen F; Lisman J; Gerber U
    Nat Commun; 2016 Nov; 7():13480. PubMed ID: 27848967
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NMDA spike/plateau potentials in dendrites of thalamocortical neurons.
    Augustinaite S; Kuhn B; Helm PJ; Heggelund P
    J Neurosci; 2014 Aug; 34(33):10892-905. PubMed ID: 25122891
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Input summation by cultured pyramidal neurons is linear and position-independent.
    Cash S; Yuste R
    J Neurosci; 1998 Jan; 18(1):10-5. PubMed ID: 9412481
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ca2+ accumulations in dendrites of neocortical pyramidal neurons: an apical band and evidence for two functional compartments.
    Yuste R; Gutnick MJ; Saar D; Delaney KR; Tank DW
    Neuron; 1994 Jul; 13(1):23-43. PubMed ID: 8043278
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons.
    Ariav G; Polsky A; Schiller J
    J Neurosci; 2003 Aug; 23(21):7750-8. PubMed ID: 12944503
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Studies on the mechanism of learning. II. On the ionic nature of the dendritic action potentials and mescaline spikes.
    García Ramos J; Ibarra BH
    Acta Physiol Lat Am; 1973; 23(3):202-12. PubMed ID: 4203275
    [No Abstract]   [Full Text] [Related]  

  • 52. Synaptic integration gradients in single cortical pyramidal cell dendrites.
    Branco T; Häusser M
    Neuron; 2011 Mar; 69(5):885-92. PubMed ID: 21382549
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A possible neural mechanism underlying consciousness based on the pattern processing capabilities of pyramidal neurons in the cerebral cortex.
    Orpwood RD
    J Theor Biol; 1994 Aug; 169(4):403-18. PubMed ID: 7967631
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glutamate-bound NMDARs arising from in vivo-like network activity extend spatio-temporal integration in a L5 cortical pyramidal cell model.
    Farinella M; Ruedt DT; Gleeson P; Lanore F; Silver RA
    PLoS Comput Biol; 2014 Apr; 10(4):e1003590. PubMed ID: 24763087
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dendritic Excitability and Gain Control in Recurrent Cortical Microcircuits.
    Hay E; Segev I
    Cereb Cortex; 2015 Oct; 25(10):3561-71. PubMed ID: 25205662
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The properties and implications of NMDA spikes in neocortical pyramidal cells.
    Rhodes P
    J Neurosci; 2006 Jun; 26(25):6704-15. PubMed ID: 16793878
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells.
    Rapp M; Yarom Y; Segev I
    Proc Natl Acad Sci U S A; 1996 Oct; 93(21):11985-90. PubMed ID: 8876249
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dendritic calcium spikes are clearly detectable at the cortical surface.
    Suzuki M; Larkum ME
    Nat Commun; 2017 Aug; 8(1):276. PubMed ID: 28819259
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synaptic integration in an excitable dendritic tree.
    Mel BW
    J Neurophysiol; 1993 Sep; 70(3):1086-101. PubMed ID: 8229160
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plasticity compartments in basal dendrites of neocortical pyramidal neurons.
    Gordon U; Polsky A; Schiller J
    J Neurosci; 2006 Dec; 26(49):12717-26. PubMed ID: 17151275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.