These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 10749522)

  • 1. Modeling energy deposition and cellular radiation effects in human bronchial epithelium by radon progeny alpha particles.
    Hofmann W; Ménache MG; Crawford-Brown DJ; Caswell RS; Karam LR
    Health Phys; 2000 Apr; 78(4):377-93. PubMed ID: 10749522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy deposition, cellular radiation effects and lung cancer risk by radon progeny alpha particles.
    Hofmann W; Crawford-Brown DJ; Fakir H; Caswell RS
    Radiat Prot Dosimetry; 2002; 99(1-4):453-6. PubMed ID: 12194352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of site-specific bronchial radon progeny deposition on the spatial and temporal distributions of cellular responses.
    Farkas A; Hofmann W; Balásházy I; Szoke I; Madas BG; Moustafa M
    Radiat Environ Biophys; 2011 May; 50(2):281-97. PubMed ID: 21327807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha-hit, cellular dose, cell transformation and inactivation probability distributions of radon progenies in the bronchial epithelium.
    Szoke I; Balásházy I; Farkas A; Hofmann W; Szoke R; Fakir H; Kis E
    Radiat Prot Dosimetry; 2006; 122(1-4):540-2. PubMed ID: 17145731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-scaled Monte Carlo calculation for radon-induced cellular damage in the bronchial airway epithelium.
    Abu Shqair A; Kim EH
    Sci Rep; 2021 May; 11(1):10230. PubMed ID: 33986410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of lung cancer risk for radon exposures based on cellular alpha particle hits.
    Truta-Popa LA; Hofmann W; Cosma C
    Radiat Prot Dosimetry; 2011 May; 145(2-3):218-23. PubMed ID: 21471125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the effect of non-uniform radon progeny activities on transformation frequencies in human bronchial airways.
    Fakir H; Hofmann W; Aubineau-Laniece I
    Radiat Prot Dosimetry; 2006; 121(3):221-35. PubMed ID: 16682395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alpha hit frequency due to radon decay products in human lung cells.
    Nikezic D; Yu KN
    Int J Radiat Biol; 2001 May; 77(5):559-65. PubMed ID: 11382334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radon induced hyperplasia: effective adaptation reducing the local doses in the bronchial epithelium.
    Madas BG
    J Radiol Prot; 2016 Sep; 36(3):653-666. PubMed ID: 27517484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-modelling of radon-induced cellular radiobiological effects in bronchial airway bifurcations: direct versus bystander effects.
    Szőke I; Farkas A; Balásházy I; Hofmann W; Madas BG; Szőke R
    Int J Radiat Biol; 2012 Jun; 88(6):477-92. PubMed ID: 22420832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of alpha particles at the cellular level--implications for the radiation weighting factor.
    Hofmann W; Fakir H; Aubineau-Laniece I; Pihet P
    Radiat Prot Dosimetry; 2004; 112(4):493-500. PubMed ID: 15623884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biological effectiveness of radon-progeny alpha particles. IV. Morphological transformation of Syrian hamster embryo cells at low doses.
    Martin SG; Miller RC; Geard CR; Hall EJ
    Radiat Res; 1995 Apr; 142(1):70-7. PubMed ID: 7899561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radon dosimetry based on the depth distribution of nuclei in human and rat lungs.
    Mercer RR; Russell ML; Crapo JD
    Health Phys; 1991 Jul; 61(1):117-30. PubMed ID: 2061038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of detailed respiratory tract model and Monte Carlo simulation of radon progeny caused dose.
    Zhu H; Li J; Qiu R; Pan Y; Wu Z; Li C; Zhang H
    J Radiol Prot; 2018 Sep; 38(3):990-1012. PubMed ID: 29856364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radon progeny microdosimetry in human and rat bronchial airways: the effect of crossfire from the alveolar region.
    Fakir H; Hofmann W; Caswell RS
    Radiat Prot Dosimetry; 2008; 130(2):149-61. PubMed ID: 18223184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biological effectiveness of radon-progeny alpha particles. V. Comparison of oncogenic transformation by accelerator-produced monoenergetic alpha particles and by polyenergetic alpha particles from radon progeny.
    Miller RC; Richards M; Brenner DJ; Hall EJ; Jostes R; Hui TE; Brooks AL
    Radiat Res; 1996 Jul; 146(1):75-80. PubMed ID: 8677301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. alpha-Radiation dose at bronchial bifurcations of smokers from indoor exposure to radon progeny.
    Martell EA
    Proc Natl Acad Sci U S A; 1983 Mar; 80(5):1285-9. PubMed ID: 6572389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microdosimetry of radon progeny alpha particles in bronchial airway bifurcations.
    Fakir H; Hofmann W; Aubineau-Lanièce I
    Radiat Prot Dosimetry; 2005; 117(4):382-94. PubMed ID: 15972358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular burdens and biological effects on tissue level caused by inhaled radon progenies.
    Madas BG; Balásházy I; Farkas Á; Szoke I
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):253-7. PubMed ID: 21186213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal microdosimetry of inhaled radon progeny in bronchial airways: advantages and limitations.
    Hofmann W; Fakir H; Pihet P
    Radiat Prot Dosimetry; 2007; 127(1-4):40-5. PubMed ID: 17827134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.