BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 10749541)

  • 1. Type I nitroreductases in soil enterobacteria reduce TNT (2,4,6,-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine).
    Kitts CL; Green CE; Otley RA; Alvarez MA; Unkefer PJ
    Can J Microbiol; 2000 Mar; 46(3):278-82. PubMed ID: 10749541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retro-nitroreductase, a putative evolutionary precursor to Enterobacter cloacae strain 96-3 nitroreductase.
    Koder RL; Oyedele O; Miller AF
    Antioxid Redox Signal; 2001 Oct; 3(5):747-55. PubMed ID: 11761325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering plants for the phytoremediation of RDX in the presence of the co-contaminating explosive TNT.
    Rylott EL; Budarina MV; Barker A; Lorenz A; Strand SE; Bruce NC
    New Phytol; 2011 Oct; 192(2):405-13. PubMed ID: 21729248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil.
    Kitts CL; Cunningham DP; Unkefer PJ
    Appl Environ Microbiol; 1994 Dec; 60(12):4608-11. PubMed ID: 7811097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation and mineralization of isotopically labeled TNT and RDX in anaerobic marine sediments.
    Ariyarathna T; Vlahos P; Smith RW; Fallis S; Groshens T; Tobias C
    Environ Toxicol Chem; 2017 May; 36(5):1170-1180. PubMed ID: 27791286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition effect of 2,4,6-trinitrotoluene (TNT) on RDX degradation by rhodococcus strains isolated from contaminated soil and water.
    Gupta S; Siebner H; Ramanathan G; Ronen Z
    Environ Pollut; 2022 Oct; 311():120018. PubMed ID: 36002099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitroreductase II involved in 2,4,6-trinitrotoluene degradation: purification and characterization from Klebsiella sp. Cl.
    Shin JH; Song HG
    J Microbiol; 2009 Oct; 47(5):536-41. PubMed ID: 19851725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of NAD(P)H-dependent nitroreductase I from Klebsiella sp. C1 and enzymatic transformation of 2,4,6-trinitrotoluene.
    Kim HY; Song HG
    Appl Microbiol Biotechnol; 2005 Oct; 68(6):766-73. PubMed ID: 15789204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobic biodegradation of high explosive hexahydro-1,3,5- trinitro-1,3,5-triazine by Janibacter cremeus isolated from contaminated soil.
    Kalsi A; Celin SM; Sharma JG
    Biotechnol Lett; 2020 Nov; 42(11):2299-2307. PubMed ID: 32572651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explosive biodegradation in soil slurry batch reactors amended with exogenous microorganisms.
    Shen CF; Hawari JA; Paquet L; Ampleman G; Thiboutot S; Guiot SR
    Water Sci Technol; 2001; 43(3):291-8. PubMed ID: 11381919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic modification of western wheatgrass (Pascopyrum smithii) for the phytoremediation of RDX and TNT.
    Zhang L; Rylott EL; Bruce NC; Strand SE
    Planta; 2019 Apr; 249(4):1007-1015. PubMed ID: 30488285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced transformation of tnt by tobacco plants expressing a bacterial nitroreductase.
    Hannink NK; Subramanian M; Rosser SJ; Basran A; Murray JA; Shanks JV; Bruce NC
    Int J Phytoremediation; 2007; 9(5):385-401. PubMed ID: 18246725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and characterization of the TNT nitroreductase of Pseudomonas sp. HK-6 in Escherichia coli.
    Lee BU; Park SC; Cho YS; Kahng HY; Oh KH
    Curr Microbiol; 2008 Apr; 56(4):386-90. PubMed ID: 18185957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate of RDX and TNT in agronomic plants.
    Vila M; Lorber-Pascal S; Laurent F
    Environ Pollut; 2007 Jul; 148(1):148-54. PubMed ID: 17254682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression in grasses of multiple transgenes for degradation of munitions compounds on live-fire training ranges.
    Zhang L; Routsong R; Nguyen Q; Rylott EL; Bruce NC; Strand SE
    Plant Biotechnol J; 2017 May; 15(5):624-633. PubMed ID: 27862819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil properties affect the toxicities of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the enchytraeid worm Enchytraeus crypticus.
    Kuperman RG; Checkai RT; Simini M; Phillips CT; Kolakowski JE; Lanno R
    Environ Toxicol Chem; 2013 Nov; 32(11):2648-59. PubMed ID: 23955807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory Column Evaluation of High Explosives Attenuation in Grenade Range Soils.
    Won J; Borden RC
    J Environ Qual; 2017 Sep; 46(5):968-974. PubMed ID: 28991974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical characterization of trinitrotoluene transforming oxygen-insensitive nitroreductases from Clostridium acetobutylicum ATCC 824.
    Kutty R; Bennett GN
    Arch Microbiol; 2005 Nov; 184(3):158-67. PubMed ID: 16187099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN34).
    Van Aken B; Yoon JM; Schnoor JL
    Appl Environ Microbiol; 2004 Jan; 70(1):508-17. PubMed ID: 14711682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial degradation of explosives: biotransformation versus mineralization.
    Hawari J; Beaudet S; Halasz A; Thiboutot S; Ampleman G
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):605-18. PubMed ID: 11131384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.