These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 10749693)

  • 1. Action potential propagation in inhomogeneous cardiac tissue: safety factor considerations and ionic mechanism.
    Wang Y; Rudy Y
    Am J Physiol Heart Circ Physiol; 2000 Apr; 278(4):H1019-29. PubMed ID: 10749693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling.
    Shaw RM; Rudy Y
    Circ Res; 1997 Nov; 81(5):727-41. PubMed ID: 9351447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsatile stretch remodels cell-to-cell communication in cultured myocytes.
    Zhuang J; Yamada KA; Saffitz JE; Kléber AG
    Circ Res; 2000 Aug; 87(4):316-22. PubMed ID: 10948066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac ischemia and uncoupling: gap junctions in ischemia and infarction.
    Dhein S
    Adv Cardiol; 2006; 42():198-212. PubMed ID: 16646592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased interstitial loading reduces the effect of microstructural variations in cardiac tissue.
    Hubbard ML; Henriquez CS
    Am J Physiol Heart Circ Physiol; 2010 Apr; 298(4):H1209-18. PubMed ID: 20097772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The vulnerable window for unidirectional block in cardiac tissue: characterization and dependence on membrane excitability and intercellular coupling.
    Shaw RM; Rudy Y
    J Cardiovasc Electrophysiol; 1995 Feb; 6(2):115-31. PubMed ID: 7780627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of Na(+)-Ca2+ exchange in activation of excitation-contraction coupling in rat ventricular myocytes.
    Wasserstrom JA; Vites AM
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):529-42. PubMed ID: 8782114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of subcellular Na+ channel distributions in the mechanism of cardiac conduction.
    Tsumoto K; Ashihara T; Haraguchi R; Nakazawa K; Kurachi Y
    Biophys J; 2011 Feb; 100(3):554-563. PubMed ID: 21281569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow conduction in cardiac tissue, II: effects of branching tissue geometry.
    Kucera JP; Kléber AG; Rohr S
    Circ Res; 1998 Oct; 83(8):795-805. PubMed ID: 9776726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation of cardiomyocyte hypercontracture by passage of Na(+) through gap junctions.
    Ruiz-Meana M; Garcia-Dorado D; Hofstaetter B; Piper HM; Soler-Soler J
    Circ Res; 1999 Aug; 85(3):280-7. PubMed ID: 10436171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gap junctions and propagation of the cardiac action potential.
    Bernstein SA; Morley GE
    Adv Cardiol; 2006; 42():71-85. PubMed ID: 16646585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micropatterns of propagation.
    Lee PJ; Pogwizd SM
    Adv Cardiol; 2006; 42():86-106. PubMed ID: 16646586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation study of cellular electric properties in heart failure.
    Priebe L; Beuckelmann DJ
    Circ Res; 1998 Jun; 82(11):1206-23. PubMed ID: 9633920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac gap junction remodeling by stretch: is it a good thing?
    Morley GE; Jalife J
    Circ Res; 2000 Aug; 87(4):272-4. PubMed ID: 10948059
    [No Abstract]   [Full Text] [Related]  

  • 15. Propagation through electrically coupled cells. Effects of a resistive barrier.
    Joyner RW; Veenstra R; Rawling D; Chorro A
    Biophys J; 1984 May; 45(5):1017-25. PubMed ID: 6733238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell size and communication: role in structural and electrical development and remodeling of the heart.
    Spach MS; Heidlage JF; Barr RC; Dolber PC
    Heart Rhythm; 2004 Oct; 1(4):500-15. PubMed ID: 15851207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow conduction in cardiac tissue, I: effects of a reduction of excitability versus a reduction of electrical coupling on microconduction.
    Rohr S; Kucera JP; Kléber AG
    Circ Res; 1998 Oct; 83(8):781-94. PubMed ID: 9776725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lessons learned about slow discontinuous conduction from models of impulse propagation.
    Rudy Y
    J Electrocardiol; 2005 Oct; 38(4 Suppl):52-4. PubMed ID: 16226074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of dynamic gap junction resistance on impulse propagation in ventricular myocardium: a computer simulation study.
    Henriquez AP; Vogel R; Muller-Borer BJ; Henriquez CS; Weingart R; Cascio WE
    Biophys J; 2001 Oct; 81(4):2112-21. PubMed ID: 11566782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conduction block in Purkinje fibers by homogeneous versus localized decrease of the gap junction conductance.
    Daleau P; Délèze J
    Can J Physiol Pharmacol; 1998 Jun; 76(6):630-41. PubMed ID: 9923401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.