BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 10749776)

  • 1. Endotoxin administration alters the force vs. pCa relationship of skeletal muscle fibers.
    Supinski G; Nethery D; Nosek TM; Callahan LA; Stofan D; DiMarco A
    Am J Physiol Regul Integr Comp Physiol; 2000 Apr; 278(4):R891-6. PubMed ID: 10749776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ROS-mediated decline in maximum Ca2+-activated force in rat skeletal muscle fibers following in vitro and in vivo stimulation.
    Dutka TL; Verburg E; Larkins N; Hortemo KH; Lunde PK; Sejersted OM; Lamb GD
    PLoS One; 2012; 7(5):e35226. PubMed ID: 22629297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free radical-induced contractile protein dysfunction in endotoxin-induced sepsis.
    Callahan LA; Nethery D; Stofan D; DiMarco A; Supinski G
    Am J Respir Cell Mol Biol; 2001 Feb; 24(2):210-7. PubMed ID: 11159056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MHC-based fiber type and E-C coupling characteristics in mechanically skinned muscle fibers of the rat.
    Goodman C; Patterson M; Stephenson G
    Am J Physiol Cell Physiol; 2003 Jun; 284(6):C1448-59. PubMed ID: 12734106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of heart failure on skeletal muscle myofibrillar protein content, isoform expression and calcium sensitivity.
    Toth MJ; Palmer BM; LeWinter MM
    Int J Cardiol; 2006 Feb; 107(2):211-9. PubMed ID: 16412799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility.
    Brotto MA; Biesiadecki BJ; Brotto LS; Nosek TM; Jin JP
    Am J Physiol Cell Physiol; 2006 Feb; 290(2):C567-76. PubMed ID: 16192301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of creatine on contractile force and sensitivity in mechanically skinned single fibers from rat skeletal muscle.
    Murphy RM; Stephenson DG; Lamb GD
    Am J Physiol Cell Physiol; 2004 Dec; 287(6):C1589-95. PubMed ID: 15282195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early changes of type 2B fibers after denervation of rat EDL skeletal muscle.
    Germinario E; Esposito A; Megighian A; Midrio M; Biral D; Betto R; Danieli-Betto D
    J Appl Physiol (1985); 2002 May; 92(5):2045-52. PubMed ID: 11960956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fiber type populations and Ca2+-activation properties of single fibers in soleus muscles from SHR and WKY rats.
    Bortolotto SK; Stephenson DG; Stephenson GM
    Am J Physiol; 1999 Mar; 276(3):C628-37. PubMed ID: 10069990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of 4-chloro-m-cresol and caffeine on skinned fibers from rat fast and slow skeletal muscles.
    Choisy S; Huchet-Cadiou C; Léoty C
    J Pharmacol Exp Ther; 2000 Sep; 294(3):884-93. PubMed ID: 10945837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of 2,3-butanedione monoxime on the contractile activation properties of fast- and slow-twitch rat muscle fibres.
    Fryer MW; Neering IR; Stephenson DG
    J Physiol; 1988 Dec; 407():53-75. PubMed ID: 3256625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of obesity on the contractile performance of isolated mouse soleus, EDL, and diaphragm muscles.
    Tallis J; Hill C; James RS; Cox VM; Seebacher F
    J Appl Physiol (1985); 2017 Jan; 122(1):170-181. PubMed ID: 27856719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Denervation produces different single fiber phenotypes in fast- and slow-twitch hindlimb muscles of the rat.
    Patterson MF; Stephenson GM; Stephenson DG
    Am J Physiol Cell Physiol; 2006 Sep; 291(3):C518-28. PubMed ID: 16611740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible changes in Ca(2+)-activation properties of rat skeletal muscle exposed to elevated physiological temperatures.
    van der Poel C; Stephenson DG
    J Physiol; 2002 Nov; 544(3):765-76. PubMed ID: 12411522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hypothyroidism on maximum specific force in rat diaphragm muscle fibers.
    Geiger PC; Cody MJ; Han YS; Hunter LW; Zhan WZ; Sieck GC
    J Appl Physiol (1985); 2002 Apr; 92(4):1506-14. PubMed ID: 11896017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered excitation-contraction coupling with skeletal muscle specific FKBP12 deficiency.
    Tang W; Ingalls CP; Durham WJ; Snider J; Reid MB; Wu G; Matzuk MM; Hamilton SL
    FASEB J; 2004 Oct; 18(13):1597-9. PubMed ID: 15289441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Levosimendan improves calcium sensitivity of diaphragm muscle fibres from a rat model of heart failure.
    van Hees HW; Andrade Acuña G; Linkels M; Dekhuijzen PN; Heunks LM
    Br J Pharmacol; 2011 Feb; 162(3):566-73. PubMed ID: 20880026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of high myoplasmic L-lactate concentration on E-C coupling in mammalian skeletal muscle.
    Posterino GS; Fryer MW
    J Appl Physiol (1985); 2000 Aug; 89(2):517-28. PubMed ID: 10926634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of troponin C in modulating the Ca2+ sensitivity of mammalian skinned cardiac and skeletal muscle fibres.
    Palmer S; Kentish JC
    J Physiol; 1994 Oct; 480 ( Pt 1)(Pt 1):45-60. PubMed ID: 7853225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen peroxide modulates Ca2+-activation of single permeabilized fibres from fast- and slow-twitch skeletal muscles of rats.
    Plant DR; Lynch GS; Williams DA
    J Muscle Res Cell Motil; 2000; 21(8):747-52. PubMed ID: 11392556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.