These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 10749822)

  • 1. Measurement of thoracoabdominal asynchrony: importance of sensor sensitivity to cross section deformations.
    de Groote A; Verbandt Y; Paiva M; Mathys P
    J Appl Physiol (1985); 2000 Apr; 88(4):1295-302. PubMed ID: 10749822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between the phase angle and phase shift parameters to assess thoracoabdominal asynchrony in COPD patients.
    Cano Porras D; Lunardi AC; Marques da Silva CCB; Paisani DM; Stelmach R; Moriya HT; Carvalho CRF
    J Appl Physiol (1985); 2017 May; 122(5):1106-1113. PubMed ID: 28183817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thoracoabdominal asynchrony: Two methods in healthy, COPD, and interstitial lung disease patients.
    Pereira MC; Porras DC; Lunardi AC; da Silva CCBM; Barbosa RCC; Cardenas LZ; Pletsch R; Ferreira JG; de Castro I; de Carvalho CRF; Caruso P; de Carvalho CRR; de Albuquerque ALP
    PLoS One; 2017; 12(8):e0182417. PubMed ID: 28767680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thoracoabdominal asynchrony in small children with lung disease--methodological aspects and the relationship to lung mechanics.
    Strömberg NO; Nelson N
    Clin Physiol; 1998 Sep; 18(5):447-56. PubMed ID: 9784941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volume rather than flow incentive spirometry is effective in improving chest wall expansion and abdominal displacement using optoelectronic plethysmography.
    Paisani Dde M; Lunardi AC; da Silva CC; Porras DC; Tanaka C; Carvalho CR
    Respir Care; 2013 Aug; 58(8):1360-6. PubMed ID: 23258579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of position on the mechanical interaction between the rib cage and abdomen in preterm infants.
    Wolfson MR; Greenspan JS; Deoras KS; Allen JL; Shaffer TH
    J Appl Physiol (1985); 1992 Mar; 72(3):1032-8. PubMed ID: 1533209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of thoraco-abdominal asynchrony.
    Hammer J; Newth CJ
    Paediatr Respir Rev; 2009 Jun; 10(2):75-80. PubMed ID: 19410206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing thoracoabdominal asynchrony.
    Black AM; Millard RK
    Clin Physiol; 2001 May; 21(3):383-5. PubMed ID: 11380539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated estimation of the phase between thoracic and abdominal movement signals.
    Motto AL; Galiana HL; Brown KA; Kearney RE
    IEEE Trans Biomed Eng; 2005 Apr; 52(4):614-21. PubMed ID: 15825863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thoracoabdominal asynchrony in infants with airflow obstruction.
    Allen JL; Wolfson MR; McDowell K; Shaffer TH
    Am Rev Respir Dis; 1990 Feb; 141(2):337-42. PubMed ID: 2137313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Techniques for measurement of thoracoabdominal asynchrony.
    Prisk GK; Hammer J; Newth CJ
    Pediatr Pulmonol; 2002 Dec; 34(6):462-72. PubMed ID: 12422344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of inspiratory resistive loading on chest wall motion and ventilation: differences between preterm and full-term infants.
    Deoras KS; Greenspan JS; Wolfson MR; Keklikian EN; Shaffer TH; Allen JL
    Pediatr Res; 1992 Nov; 32(5):589-94. PubMed ID: 1480462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple dynamic model of respiratory pump.
    Calabrese P; Baconnier P; Laouani A; Fontecave-Jallon J; Guméry PY; Eberhard A; Benchetrit G
    Acta Biotheor; 2010 Sep; 58(2-3):265-75. PubMed ID: 20652727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scope of linear estimators of tidal and occluded volumes using thoracoabdominal indications of breathing movement coordination.
    Millard RK; Black AM
    Med Eng Phys; 2004 Apr; 26(3):225-35. PubMed ID: 14984844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure sensor plethysmography: a method for assessment of respiratory motion in children.
    Banovcin P; Seidenberg J; von der Hardt H
    Eur Respir J; 1995 Jan; 8(1):167-71. PubMed ID: 7744184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of an inductive plethysmograph for ventilation measurement.
    Cohen KP; Panescu D; Booske JH; Webster JG; Tompkins WJ
    Physiol Meas; 1994 May; 15(2):217-29. PubMed ID: 8081197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of a Respiratory Movement Evaluation Tool to Quantify Thoracoabdominal Movement for Neuromuscular Diseases.
    Liu F; Kawakami M; Tamura K; Taki Y; Shimizu K; Otsuka T; Tsuji T; Miyata C; Tashiro S; Wada A; Mizuno K; Aoki Y; Liu M
    Respir Care; 2017 Apr; 62(4):423-431. PubMed ID: 28028188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chest wall motion in neonates utilizing respiratory inductive plethysmography.
    Warren RH; Alderson SH
    J Perinatol; 1994; 14(2):101-5. PubMed ID: 8014690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated respiratory inductive plethysmography to evaluate breathing in infants at risk for postoperative apnea.
    Brown KA; Aoude AA; Galiana HL; Kearney RE
    Can J Anaesth; 2008 Nov; 55(11):739-47. PubMed ID: 19138913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of volume-oriented versus flow-oriented incentive spirometry on chest wall volumes, inspiratory muscle activity, and thoracoabdominal synchrony in the elderly.
    Lunardi AC; Porras DC; Barbosa RC; Paisani DM; Marques da Silva CC; Tanaka C; Carvalho CR
    Respir Care; 2014 Mar; 59(3):420-6. PubMed ID: 23983269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.