These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 10750097)
41. Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNFalpha and interleukin-8 (CXCL8) expression in the udder. Yang W; Zerbe H; Petzl W; Brunner RM; Günther J; Draing C; von Aulock S; Schuberth HJ; Seyfert HM Mol Immunol; 2008 Mar; 45(5):1385-97. PubMed ID: 17936907 [TBL] [Abstract][Full Text] [Related]
42. Antibiotic sensitivity of Staphylococcus aureus and coagulase negative staphylococci isolated from infected bovine mammary glands. McDonald JS; Anderson AJ Cornell Vet; 1981 Oct; 71(4):391-6. PubMed ID: 7318442 [No Abstract] [Full Text] [Related]
43. Bovine lactoferrin serves as a molecular bridge for internalization of Streptococcus uberis into bovine mammary epithelial cells. Patel D; Almeida RA; Dunlap JR; Oliver SP Vet Microbiol; 2009 Jun; 137(3-4):297-301. PubMed ID: 19193502 [TBL] [Abstract][Full Text] [Related]
44. Mouse mastitis model of infection for antimicrobial compound efficacy studies against intracellular and extracellular forms of Staphylococcus aureus. Brouillette E; Grondin G; Lefebvre C; Talbot BG; Malouin F Vet Microbiol; 2004 Aug; 101(4):253-62. PubMed ID: 15261998 [TBL] [Abstract][Full Text] [Related]
45. Effect of slime on adherence of Staphylococcus aureus isolated from bovine and ovine mastitis. Aguilar B; Amorena B; Iturralde M Vet Microbiol; 2001 Jan; 78(2):183-91. PubMed ID: 11163708 [TBL] [Abstract][Full Text] [Related]
46. Somatic cell scores and clinical signs following experimental intramammary infection of dairy cows with a Staphylococcus aureus small colony variant (S. aureus SCV) in comparison to other bovine strains. Atalla H; Gyles C; Wilkie B; Leslie K; Mallard B Vet Microbiol; 2009 Jun; 137(3-4):326-34. PubMed ID: 19233574 [TBL] [Abstract][Full Text] [Related]
47. Induced staphylococcal infections in the bovine mammary gland. Postle DS; Roguinsky M; Poutrel B Am J Vet Res; 1978 Jan; 39(1):29-35. PubMed ID: 629447 [TBL] [Abstract][Full Text] [Related]
48. Hemagglutination by Staphylococcus aureus. Studies on strains isolated from bovine mastitis. Lindahl M; Jonsson P; Mårdh PA APMIS; 1989 Feb; 97(2):175-80. PubMed ID: 2537648 [TBL] [Abstract][Full Text] [Related]
49. Adenoviral-mediated transfer of a lysostaphin gene into the goat mammary gland. Fan W; Plaut K; Bramley AJ; Barlow JW; Kerr DE J Dairy Sci; 2002 Jul; 85(7):1709-16. PubMed ID: 12201521 [TBL] [Abstract][Full Text] [Related]
50. Analysis of key molecules of the innate immune system in mammary epithelial cells isolated from marker-assisted and conventionally selected cattle. Griesbeck-Zilch B; Osman M; Kühn Ch; Schwerin M; Bruckmaier RH; Pfaffl MW; Hammerle-Fickinger A; Meyer HH; Wellnitz O J Dairy Sci; 2009 Sep; 92(9):4621-33. PubMed ID: 19700725 [TBL] [Abstract][Full Text] [Related]
51. Purified Staphylococcus aureus leukotoxin LukM/F' does not trigger inflammation in the bovine mammary gland. Fromageau A; Cunha P; Gilbert FB; Rainard P Microb Pathog; 2011 Dec; 51(6):396-401. PubMed ID: 21951578 [TBL] [Abstract][Full Text] [Related]
53. Eukaryotic and prokaryotic cell functions required for invasion of Staphylococcus aureus into bovine mammary epithelial cells. Almeida RA; Matthews KR; Oliver SP Zentralbl Veterinarmed B; 1997 May; 44(3):139-45. PubMed ID: 9197209 [TBL] [Abstract][Full Text] [Related]
54. Lactococcus lactis V7 inhibits the cell invasion of bovine mammary epithelial cells by Escherichia coli and Staphylococcus aureus. Assis BS; Germon P; Silva AM; Even S; Nicoli JR; Le Loir Y Benef Microbes; 2015; 6(6):879-86. PubMed ID: 26322541 [TBL] [Abstract][Full Text] [Related]
55. Staphylococcus aureus and Escherichia coli cause deviating expression profiles of cytokines and lactoferrin messenger ribonucleic acid in mammary epithelial cells. Griesbeck-Zilch B; Meyer HH; Kühn CH; Schwerin M; Wellnitz O J Dairy Sci; 2008 Jun; 91(6):2215-24. PubMed ID: 18487644 [TBL] [Abstract][Full Text] [Related]
56. Quantitative and qualitative properties of host polymorphonuclear cells during experimentally induced Staphylococcus aureus mastitis in cows. Daley MJ; Oldham ER; Williams TJ; Coyle PA Am J Vet Res; 1991 Mar; 52(3):474-9. PubMed ID: 2035925 [TBL] [Abstract][Full Text] [Related]
57. Binding of a surface protein of Staphylococcus aureus to cultured ovine mammary gland epithelial cells. Aguilar B; Iturralde M Vet Microbiol; 2001 Sep; 82(2):165-75. PubMed ID: 11423207 [TBL] [Abstract][Full Text] [Related]
58. Role of SraP in adherence of Staphylococcus aureus to the bovine mammary epithelia. Takamatsu D; Hata E; Osaki M; Aso H; Kobayashi S; Sekizaki T J Vet Med Sci; 2008 Jul; 70(7):735-8. PubMed ID: 18685250 [TBL] [Abstract][Full Text] [Related]
59. Factors involved in the early pathogenesis of bovine Staphylococcus aureus mastitis with emphasis on bacterial adhesion and invasion. A review. Kerro Dego O; van Dijk JE; Nederbragt H Vet Q; 2002 Dec; 24(4):181-98. PubMed ID: 12540135 [TBL] [Abstract][Full Text] [Related]
60. Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands. Schmelcher M; Powell AM; Becker SC; Camp MJ; Donovan DM Appl Environ Microbiol; 2012 Apr; 78(7):2297-305. PubMed ID: 22286996 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]