BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 10750828)

  • 1. Differential contributions of magnocellular and parvocellular pathways to the contrast response of neurons in bush baby primary visual cortex (V1).
    Allison JD; Melzer P; Ding Y; Bonds AB; Casagrande VA
    Vis Neurosci; 2000; 17(1):71-6. PubMed ID: 10750828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual resolution and sensitivity of single cells in the primary visual cortex (V1) of a nocturnal primate (bush baby): correlations with cortical layers and cytochrome oxidase patterns.
    DeBruyn EJ; Casagrande VA; Beck PD; Bonds AB
    J Neurophysiol; 1993 Jan; 69(1):3-18. PubMed ID: 8381862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus.
    Irvin GE; Casagrande VA; Norton TT
    Vis Neurosci; 1993; 10(2):363-73. PubMed ID: 8485098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Color responses of the human lateral geniculate nucleus: [corrected] selective amplification of S-cone signals between the lateral geniculate nucleno and primary visual cortex measured with high-field fMRI.
    Mullen KT; Dumoulin SO; Hess RF
    Eur J Neurosci; 2008 Nov; 28(9):1911-23. PubMed ID: 18973604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex.
    Nealey TA; Maunsell JH
    J Neurosci; 1994 Apr; 14(4):2069-79. PubMed ID: 8158257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of feedforward thalamic afferents and corticogeniculate feedback to the spatial summation area of macaque V1 and LGN.
    Angelucci A; Sainsbury K
    J Comp Neurol; 2006 Sep; 498(3):330-51. PubMed ID: 16871526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of input from the lower cortical layers on the orientation tuning of upper layer V1 cells in a primate.
    Allison JD; Casagrande VA; Bonds AB
    Vis Neurosci; 1995; 12(2):309-20. PubMed ID: 7786852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic connections of layer III of striate cortex in squirrel monkey and bush baby: correlations with patterns of cytochrome oxidase.
    Lachica EA; Beck PD; Casagrande VA
    J Comp Neurol; 1993 Mar; 329(2):163-87. PubMed ID: 8384222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys.
    Spear PD; Moore RJ; Kim CB; Xue JT; Tumosa N
    J Neurophysiol; 1994 Jul; 72(1):402-20. PubMed ID: 7965023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the superior colliculus on responses of lateral geniculate neurons in the cat.
    Xue JT; Kim CB; Moore RJ; Spear PD
    Vis Neurosci; 1994; 11(6):1059-76. PubMed ID: 7841116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrast invariance of orientation tuning in the lateral geniculate nucleus of the feline visual system.
    Viswanathan S; Jayakumar J; Vidyasagar TR
    Eur J Neurosci; 2015 Sep; 42(6):2250-7. PubMed ID: 26080026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between cortical state and spiking activity in the lateral geniculate nucleus of marmosets.
    Pietersen ANJ; Cheong SK; Munn B; Gong P; Martin PR; Solomon SG
    J Physiol; 2017 Jul; 595(13):4475-4492. PubMed ID: 28116750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrast sensitivity is enhanced by expansive nonlinear processing in the lateral geniculate nucleus.
    Duong T; Freeman RD
    J Neurophysiol; 2008 Jan; 99(1):367-72. PubMed ID: 17959741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfer characteristics of lateral geniculate nucleus X neurons in the cat: effects of spatial frequency and contrast.
    Cheng H; Chino YM; Smith EL; Hamamoto J; Yoshida K
    J Neurophysiol; 1995 Dec; 74(6):2548-57. PubMed ID: 8747213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A retinal source of spatial contrast gain control.
    Scholl B; Latimer KW; Priebe NJ
    J Neurosci; 2012 Jul; 32(29):9824-30. PubMed ID: 22815497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antidromic latency of magnocellular, parvocellular, and koniocellular (Blue-ON) geniculocortical relay cells in marmosets.
    Cheong SK; Johannes Pietersen AN
    Vis Neurosci; 2014 May; 31(3):263-73. PubMed ID: 24703370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
    Naito T; Sadakane O; Okamoto M; Sato H
    Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnocellular and parvocellular visual pathways have different blood oxygen level-dependent signal time courses in human primary visual cortex.
    Liu CS; Bryan RN; Miki A; Woo JH; Liu GT; Elliott MA
    AJNR Am J Neuroradiol; 2006 Sep; 27(8):1628-34. PubMed ID: 16971600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual response latencies in striate cortex of the macaque monkey.
    Maunsell JH; Gibson JR
    J Neurophysiol; 1992 Oct; 68(4):1332-44. PubMed ID: 1432087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gating and control of primary visual cortex by pulvinar.
    Purushothaman G; Marion R; Li K; Casagrande VA
    Nat Neurosci; 2012 Jun; 15(6):905-12. PubMed ID: 22561455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.