These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 10751189)
1. Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans. McKenzie S; Phillips SM; Carter SL; Lowther S; Gibala MJ; Tarnopolsky MA Am J Physiol Endocrinol Metab; 2000 Apr; 278(4):E580-7. PubMed ID: 10751189 [TBL] [Abstract][Full Text] [Related]
2. Substrate utilization during endurance exercise in men and women after endurance training. Carter SL; Rennie C; Tarnopolsky MA Am J Physiol Endocrinol Metab; 2001 Jun; 280(6):E898-907. PubMed ID: 11350771 [TBL] [Abstract][Full Text] [Related]
3. Nutritional status affects branched-chain oxoacid dehydrogenase activity during exercise in humans. Jackman ML; Gibala MJ; Hultman E; Graham TE Am J Physiol; 1997 Feb; 272(2 Pt 1):E233-8. PubMed ID: 9124328 [TBL] [Abstract][Full Text] [Related]
4. Exercise training increases branched-chain oxoacid dehydrogenase kinase content in human skeletal muscle. Howarth KR; Burgomaster KA; Phillips SM; Gibala MJ Am J Physiol Regul Integr Comp Physiol; 2007 Sep; 293(3):R1335-41. PubMed ID: 17581840 [TBL] [Abstract][Full Text] [Related]
5. Effect of endurance training on leucine metabolism in perfused rat skeletal muscle. Hood DA; Terjung RL Am J Physiol; 1987 Dec; 253(6 Pt 1):E648-56. PubMed ID: 3425711 [TBL] [Abstract][Full Text] [Related]
6. Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. Burgomaster KA; Heigenhauser GJ; Gibala MJ J Appl Physiol (1985); 2006 Jun; 100(6):2041-7. PubMed ID: 16469933 [TBL] [Abstract][Full Text] [Related]
7. Protein requirements for endurance athletes. Tarnopolsky M Nutrition; 2004; 20(7-8):662-8. PubMed ID: 15212749 [TBL] [Abstract][Full Text] [Related]
8. Effect of endurance training on muscle TCA cycle metabolism during exercise in humans. Howarth KR; LeBlanc PJ; Heigenhauser GJ; Gibala MJ J Appl Physiol (1985); 2004 Aug; 97(2):579-84. PubMed ID: 15121741 [TBL] [Abstract][Full Text] [Related]
9. Modulation of whole body protein metabolism, during and after exercise, by variation of dietary protein. Bowtell JL; Leese GP; Smith K; Watt PW; Nevill A; Rooyackers O; Wagenmakers AJ; Rennie MJ J Appl Physiol (1985); 1998 Nov; 85(5):1744-52. PubMed ID: 9804577 [TBL] [Abstract][Full Text] [Related]
10. Regulation of branched-chain 2-oxo acid dehydrogenase activity during exercise. Kasperek GJ Am J Physiol; 1989 Jan; 256(1 Pt 1):E186-90. PubMed ID: 2912141 [TBL] [Abstract][Full Text] [Related]
11. Endurance training increases fatty acid turnover, but not fat oxidation, in young men. Friedlander AL; Casazza GA; Horning MA; Usaj A; Brooks GA J Appl Physiol (1985); 1999 Jun; 86(6):2097-105. PubMed ID: 10368378 [TBL] [Abstract][Full Text] [Related]
12. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Burgomaster KA; Hughes SC; Heigenhauser GJ; Bradwell SN; Gibala MJ J Appl Physiol (1985); 2005 Jun; 98(6):1985-90. PubMed ID: 15705728 [TBL] [Abstract][Full Text] [Related]
13. Effects of endurance training on cardiorespiratory fitness and substrate partitioning in postmenopausal women. Zarins ZA; Wallis GA; Faghihnia N; Johnson ML; Fattor JA; Horning MA; Brooks GA Metabolism; 2009 Sep; 58(9):1338-46. PubMed ID: 19573883 [TBL] [Abstract][Full Text] [Related]
14. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Talanian JL; Galloway SD; Heigenhauser GJ; Bonen A; Spriet LL J Appl Physiol (1985); 2007 Apr; 102(4):1439-47. PubMed ID: 17170203 [TBL] [Abstract][Full Text] [Related]
15. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. Yeo WK; Paton CD; Garnham AP; Burke LM; Carey AL; Hawley JA J Appl Physiol (1985); 2008 Nov; 105(5):1462-70. PubMed ID: 18772325 [TBL] [Abstract][Full Text] [Related]
16. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Perry CG; Heigenhauser GJ; Bonen A; Spriet LL Appl Physiol Nutr Metab; 2008 Dec; 33(6):1112-23. PubMed ID: 19088769 [TBL] [Abstract][Full Text] [Related]
17. Glucose ingestion during endurance training does not alter adaptation. Akerstrom TC; Fischer CP; Plomgaard P; Thomsen C; van Hall G; Pedersen BK J Appl Physiol (1985); 2009 Jun; 106(6):1771-9. PubMed ID: 19228984 [TBL] [Abstract][Full Text] [Related]
18. Beneficial metabolic adaptations due to endurance exercise training in the fasted state. Van Proeyen K; Szlufcik K; Nielens H; Ramaekers M; Hespel P J Appl Physiol (1985); 2011 Jan; 110(1):236-45. PubMed ID: 21051570 [TBL] [Abstract][Full Text] [Related]
19. Oxidative capacity and glycogen content increase more in arm than leg muscle in sedentary women after intense training. Nordsborg NB; Connolly L; Weihe P; Iuliano E; Krustrup P; Saltin B; Mohr M J Appl Physiol (1985); 2015 Jul; 119(2):116-23. PubMed ID: 26023221 [TBL] [Abstract][Full Text] [Related]
20. Exercise causes branched-chain oxoacid dehydrogenase dephosphorylation but not AMP deaminase binding. Rush JW; MacLean DA; Hultman E; Graham TE J Appl Physiol (1985); 1995 Jun; 78(6):2193-200. PubMed ID: 7665417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]