BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 10751389)

  • 21. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens.
    Welte C; Deppenmeier U
    Biochim Biophys Acta; 2014 Jul; 1837(7):1130-47. PubMed ID: 24333786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ATP-dependent H+ -pump activity in inverted vesicles of Methanosarcina mazei Gö1 and characterization of membrane ATPase.
    Inatomi KI
    J Bacteriol; 1996 Apr; 178(8):2424-6. PubMed ID: 8636049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Defined subcomplexes of the A1 ATPase from the archaeon Methanosarcina mazei Gö1: biochemical properties and redox regulation.
    Lemker T; Grüber G; Schmid R; Müller V
    FEBS Lett; 2003 Jun; 544(1-3):206-9. PubMed ID: 12782317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of the vhoGAC and vhtGAC operons from Methanosarcina mazei strain Gö1, both encoding a membrane-bound hydrogenase and a cytochrome b.
    Deppenmeier U; Blaut M; Lentes S; Herzberg C; Gottschalk G
    Eur J Biochem; 1995 Jan; 227(1-2):261-9. PubMed ID: 7851393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Geranylfarnesyl diphosphate synthase from Methanosarcina mazei: Different role, different evolution.
    Ogawa T; Yoshimura T; Hemmi H
    Biochem Biophys Res Commun; 2010 Feb; 393(1):16-20. PubMed ID: 20097171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei.
    Welte C; Krätzer C; Deppenmeier U
    FEBS J; 2010 Aug; 277(16):3396-403. PubMed ID: 20629748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 1H, 13C, and 15N resonance assignments of subunit F of the A(1)A (O) ATP synthase from Methanosarcina mazei Gö1.
    Gayen S; Vivekanandan S; Biuković G; Grüber G; Yoon HS
    Biomol NMR Assign; 2007 Jul; 1(1):23-5. PubMed ID: 19636817
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sodium ion translocation by N5-methyltetrahydromethanopterin: coenzyme M methyltransferase from Methanosarcina mazei Gö1 reconstituted in ether lipid liposomes.
    Lienard T; Becher B; Marschall M; Bowien S; Gottschalk G
    Eur J Biochem; 1996 Aug; 239(3):857-64. PubMed ID: 8774736
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduced coenzyme F420: heterodisulfide oxidoreductase, a proton- translocating redox system in methanogenic bacteria.
    Deppenmeier U; Blaut M; Mahlmann A; Gottschalk G
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9449-53. PubMed ID: 11607121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A.
    Rohlin L; Gunsalus RP
    BMC Microbiol; 2010 Feb; 10():62. PubMed ID: 20178638
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The salt-induced ABC transporter Ota of the methanogenic archaeon Methanosarcina mazei Gö1 is a glycine betaine transporter.
    Schmidt S; Pflüger K; Kögl S; Spanheimer R; Müller V
    FEMS Microbiol Lett; 2007 Dec; 277(1):44-9. PubMed ID: 17986083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Ferredoxin- and F420H2-Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea.
    Yan Z; Wang M; Ferry JG
    mBio; 2017 Feb; 8(1):. PubMed ID: 28174314
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subunit F modulates ATP binding and migration in the nucleotide-binding subunit B of the A(1)A(O) ATP synthase of Methanosarcina mazei Gö1.
    Raghunathan D; Gayen S; Kumar A; Hunke C; Grüber G; Verma CS
    J Bioenerg Biomembr; 2012 Feb; 44(1):213-24. PubMed ID: 22350011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coexistence of group I and group II chaperonins in the archaeon Methanosarcina mazei.
    Klunker D; Haas B; Hirtreiter A; Figueiredo L; Naylor DJ; Pfeifer G; Müller V; Deppenmeier U; Gottschalk G; Hartl FU; Hayer-Hartl M
    J Biol Chem; 2003 Aug; 278(35):33256-67. PubMed ID: 12796498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional organization of the archaeal A1-ATPase from Methanosarcina mazei Gö1.
    Coskun U; Radermacher M; Müller V; Ruiz T; Grüber G
    J Biol Chem; 2004 May; 279(21):22759-64. PubMed ID: 14988401
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The origin of the sodium-dependent NADH oxidation by the respiratory chain of Klebsiella pneumoniae.
    Bertsova YV; Bogachev AV
    FEBS Lett; 2004 Apr; 563(1-3):207-12. PubMed ID: 15063750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Roles of subunit NuoK (ND4L) in the energy-transducing mechanism of Escherichia coli NDH-1 (NADH:quinone oxidoreductase).
    Torres-Bacete J; Sinha PK; Sato M; Patki G; Kao MC; Matsuno-Yagi A; Yagi T
    J Biol Chem; 2012 Dec; 287(51):42763-72. PubMed ID: 23105119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tellurite-mediated damage to the Escherichia coli NDH-dehydrogenases and terminal oxidases in aerobic conditions.
    Díaz-Vásquez WA; Abarca-Lagunas MJ; Cornejo FA; Pinto CA; Arenas FA; Vásquez CC
    Arch Biochem Biophys; 2015 Jan; 566():67-75. PubMed ID: 25447814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. sRNA
    Prasse D; Förstner KU; Jäger D; Backofen R; Schmitz RA
    RNA Biol; 2017 Nov; 14(11):1544-1558. PubMed ID: 28296572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The three families of respiratory NADH dehydrogenases.
    Kerscher S; Dröse S; Zickermann V; Brandt U
    Results Probl Cell Differ; 2008; 45():185-222. PubMed ID: 17514372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.