BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 10751389)

  • 41. Conformational dynamics of the rotary subunit F in the A
    Singh D; Sielaff H; Börsch M; Grüber G
    FEBS Lett; 2017 Mar; 591(6):854-862. PubMed ID: 28231387
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Purification of two putative type II NADH dehydrogenases with different substrate specificities from alkaliphilic Bacillus pseudofirmus OF4.
    Liu J; Krulwich TA; Hicks DB
    Biochim Biophys Acta; 2008 May; 1777(5):453-61. PubMed ID: 18359284
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of nitrogen and carbon sources on transcription of soluble methyltransferases in Methanosarcina mazei strain Go1.
    Veit K; Ehlers C; Schmitz RA
    J Bacteriol; 2005 Sep; 187(17):6147-54. PubMed ID: 16109956
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Alternate pathways for NADH oxidation in Thermus thermophilus using type 2 NADH dehydrogenases.
    Venkatakrishnan P; Lencina AM; Schurig-Briccio LA; Gennis RB
    Biol Chem; 2013 May; 394(5):667-76. PubMed ID: 23370906
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crosstalk along the stalk: dynamics of the interaction of subunits B and F in the A(1)A(O) ATP synthase of Methanosarcina mazei Gö1.
    Raghunathan D; Gayen S; Grüber G; Verma CS
    Biochemistry; 2010 May; 49(19):4181-90. PubMed ID: 20377205
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Function of Ech hydrogenase in ferredoxin-dependent, membrane-bound electron transport in Methanosarcina mazei.
    Welte C; Kallnik V; Grapp M; Bender G; Ragsdale S; Deppenmeier U
    J Bacteriol; 2010 Feb; 192(3):674-8. PubMed ID: 19948802
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional similarities and differences of an archaeal Hsp70(DnaK) stress protein compared with its homologue from the bacterium Escherichia coli.
    Zmijewski MA; Macario AJ; Lipińska B
    J Mol Biol; 2004 Feb; 336(2):539-49. PubMed ID: 14757064
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electron paramagnetic resonance spectroscopic and electrochemical characterization of the partially purified N5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanosarcina mazei Gö1.
    Lu WP; Becher B; Gottschalk G; Ragsdale SW
    J Bacteriol; 1995 May; 177(9):2245-50. PubMed ID: 7730249
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of a salt-induced primary transporter for glycine betaine in the methanogen Methanosarcina mazei Gö1.
    Roessler M; Pflüger K; Flach H; Lienard T; Gottschalk G; Müller V
    Appl Environ Microbiol; 2002 May; 68(5):2133-9. PubMed ID: 11976081
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proton translocation in methanogens.
    Welte C; Deppenmeier U
    Methods Enzymol; 2011; 494():257-80. PubMed ID: 21402219
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Type 2 NADH Dehydrogenase Is the Only Point of Entry for Electrons into the Streptococcus agalactiae Respiratory Chain and Is a Potential Drug Target.
    Lencina AM; Franza T; Sullivan MJ; Ulett GC; Ipe DS; Gaudu P; Gennis RB; Schurig-Briccio LA
    mBio; 2018 Jul; 9(4):. PubMed ID: 29970468
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Amphipathic C-terminal region of Escherichia coli NADH dehydrogenase-2 mediates membrane localization.
    Villegas JM; Volentini SI; Rintoul MR; Rapisarda VA
    Arch Biochem Biophys; 2011 Jan; 505(2):155-9. PubMed ID: 20933494
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural Insights into the A1 ATPase from the archaeon, Methanosarcina mazei Gö1.
    Grüber G; Svergun DI; Coskun U; Lemker T; Koch MH; Schägger H; Müller V
    Biochemistry; 2001 Feb; 40(7):1890-6. PubMed ID: 11329254
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Shewanella oneidensis MR-1 Utilizes both Sodium- and Proton-Pumping NADH Dehydrogenases during Aerobic Growth.
    Duhl KL; Tefft NM; TerAvest MA
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654176
    [No Abstract]   [Full Text] [Related]  

  • 55. Development of genetic methods and construction of a chromosomal glnK1 mutant in Methanosarcina mazei strain Gö1.
    Ehlers C; Weidenbach K; Veit K; Deppenmeier U; Metcalf WW; Schmitz RA
    Mol Genet Genomics; 2005 Jun; 273(4):290-8. PubMed ID: 15824904
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genetic inactivation of the H(+)-translocating NADH:ubiquinone oxidoreductase of Paracoccus denitrificans is facilitated by insertion of the ndh gene from Escherichia coli.
    Finel M
    FEBS Lett; 1996 Sep; 393(1):81-5. PubMed ID: 8804429
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lysine-2,3-aminomutase and beta-lysine acetyltransferase genes of methanogenic archaea are salt induced and are essential for the biosynthesis of Nepsilon-acetyl-beta-lysine and growth at high salinity.
    Pflüger K; Baumann S; Gottschalk G; Lin W; Santos H; Müller V
    Appl Environ Microbiol; 2003 Oct; 69(10):6047-55. PubMed ID: 14532061
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Staphylococcus aureus NuoL-like protein MpsA contributes to the generation of membrane potential.
    Mayer S; Steffen W; Steuber J; Götz F
    J Bacteriol; 2015 Mar; 197(5):794-806. PubMed ID: 25448817
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Studies of the CobA-type ATP:Co(I)rrinoid adenosyltransferase enzyme of Methanosarcina mazei strain Go1.
    Buan NR; Rehfeld K; Escalante-Semerena JC
    J Bacteriol; 2006 May; 188(10):3543-50. PubMed ID: 16672609
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dissection of the caffeate respiratory chain in the acetogen Acetobacterium woodii: identification of an Rnf-type NADH dehydrogenase as a potential coupling site.
    Imkamp F; Biegel E; Jayamani E; Buckel W; Müller V
    J Bacteriol; 2007 Nov; 189(22):8145-53. PubMed ID: 17873051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.