These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 10751453)

  • 21. No parallel fiber volleys in the cerebellar cortex: evidence from cross-correlation analysis between Purkinje cells in a computer model and in recordings from anesthetized rats.
    Jaeger D
    J Comput Neurosci; 2003; 14(3):311-27. PubMed ID: 12766430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mini-review: synaptic integration in the cerebellar nuclei--perspectives from dynamic clamp and computer simulation studies.
    Jaeger D
    Cerebellum; 2011 Dec; 10(4):659-66. PubMed ID: 21259124
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rebound excitation triggered by synaptic inhibition in cerebellar nuclear neurons is suppressed by selective T-type calcium channel block.
    Boehme R; Uebele VN; Renger JJ; Pedroarena C
    J Neurophysiol; 2011 Nov; 106(5):2653-61. PubMed ID: 21849607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms supporting transfer of inhibitory signals into the spike output of spontaneously firing cerebellar nuclear neurons in vitro.
    Pedroarena CM
    Cerebellum; 2010 Mar; 9(1):67-76. PubMed ID: 20148319
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential Coding Strategies in Glutamatergic and GABAergic Neurons in the Medial Cerebellar Nucleus.
    Özcan OO; Wang X; Binda F; Dorgans K; De Zeeuw CI; Gao Z; Aertsen A; Kumar A; Isope P
    J Neurosci; 2020 Jan; 40(1):159-170. PubMed ID: 31694963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nothing can be coincidence: synaptic inhibition and plasticity in the cerebellar nuclei.
    Pugh JR; Raman IM
    Trends Neurosci; 2009 Mar; 32(3):170-7. PubMed ID: 19178955
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integration of Swimming-Related Synaptic Excitation and Inhibition by olig2
    Harmon TC; McLean DL; Raman IM
    J Neurosci; 2020 Apr; 40(15):3063-3074. PubMed ID: 32139583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
    Saraga F; Balena T; Wolansky T; Dickson CT; Woodin MA
    Neuroscience; 2008 Jul; 155(1):64-75. PubMed ID: 18562122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses.
    De Schutter E; Bower JM
    J Neurophysiol; 1994 Jan; 71(1):401-19. PubMed ID: 8158238
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stability of complex spike timing-dependent plasticity in cerebellar learning.
    Roberts PD
    J Comput Neurosci; 2007 Jun; 22(3):283-96. PubMed ID: 17203402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integration of broadband conductance input in rat somatosensory cortical inhibitory interneurons: an inhibition-controlled switch between intrinsic and input-driven spiking in fast-spiking cells.
    Tateno T; Robinson HP
    J Neurophysiol; 2009 Feb; 101(2):1056-72. PubMed ID: 19091918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synaptic action of the olivocerebellar system on cerebellar nuclear spike activity.
    Blenkinsop TA; Lang EJ
    J Neurosci; 2011 Oct; 31(41):14708-20. PubMed ID: 21994387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Slow Short-Term Depression at Purkinje to Deep Cerebellar Nuclear Neuron Synapses Supports Gain-Control and Linear Encoding over Second-Long Time Windows.
    Pedroarena CM
    J Neurosci; 2020 Jul; 40(31):5937-5953. PubMed ID: 32554551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synchrony is Key: Complex Spike Inhibition of the Deep Cerebellar Nuclei.
    Tang T; Suh CY; Blenkinsop TA; Lang EJ
    Cerebellum; 2016 Feb; 15(1):10-13. PubMed ID: 26559892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Central control of dendritic spikes shapes the responses of Purkinje-like cells through spike timing-dependent synaptic plasticity.
    Sawtell NB; Williams A; Bell CC
    J Neurosci; 2007 Feb; 27(7):1552-65. PubMed ID: 17301164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regular patterns in cerebellar Purkinje cell simple spike trains.
    Shin SL; Hoebeek FE; Schonewille M; De Zeeuw CI; Aertsen A; De Schutter E
    PLoS One; 2007 May; 2(5):e485. PubMed ID: 17534435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synaptic excitation by climbing fibre collaterals in the cerebellar nuclei of juvenile and adult mice.
    Najac M; Raman IM
    J Physiol; 2017 Nov; 595(21):6703-6718. PubMed ID: 28795396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of synaptic and voltage-gated currents in the control of Purkinje cell spiking: a modeling study.
    Jaeger D; De Schutter E; Bower JM
    J Neurosci; 1997 Jan; 17(1):91-106. PubMed ID: 8987739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. BK and Kv3.1 potassium channels control different aspects of deep cerebellar nuclear neurons action potentials and spiking activity.
    Pedroarena CM
    Cerebellum; 2011 Dec; 10(4):647-58. PubMed ID: 21750937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells.
    Mittmann W; Koch U; Häusser M
    J Physiol; 2005 Mar; 563(Pt 2):369-78. PubMed ID: 15613376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.